mindspore.Tensor.std
- Tensor.std(axis=None, ddof=0, keepdims=False)[source]
Compute the standard deviation along the specified axis.
The standard deviation is the square root of the average of the squared deviations from the mean, i.e., \(std = sqrt(mean(abs(x - x.mean())**2))\).
Return the standard deviation, which is computed for the flattened array by default, otherwise over the specified axis.
Note
Numpy arguments dtype, out and where are not supported.
- Parameters
axis (Union[None, int, tuple(int)]) –
Axis or axes along which the standard deviation is computed. Default: None.
If None, compute the standard deviation of the flattened array.
ddof (int) – Means Delta Degrees of Freedom. The divisor used in calculations is \(N - ddof\), where \(N\) represents the number of elements. Default: 0.
keepdims – Default: False.
- Returns
Standard deviation tensor.
- Supported Platforms:
Ascend
GPU
CPU
See also
mindspore.Tensor.mean()
: Reduce a dimension of a tensor by averaging all elements in the dimension.mindspore.Tensor.var()
: Compute the variance along the specified axis.Examples
>>> import numpy as np >>> from mindspore import Tensor >>> input_x = Tensor(np.array([1, 2, 3, 4], dtype=np.float32)) >>> output = input_x.std() >>> print(output) 1.118034