Training Process Exit Gracefully
Overview
When there are suboptimal devices in the training cluster, saving checkpoint and exiting the cluster training process before the failure occurs can effectively prevent the loss of weight data when the cluster is damaged. This also avoids issues such as training data rollback and loading checkpoint rollback when training recovery, effectively preventing the waste of training resources.
This document is an example of the training process exit gracefully. To illustrate the specific usage, we assume that the exit configuration detected at the first training step, and the training process is ended in advance. You can get the full sample code here: process_graceful_exit .
graceful_exit.py
is the source code, train.sh
is the start training script, and graceful_exit.json
is the graceful exit config json file.
Dataset And Training Model
Data Preparation
Download the MNIST dataset and unzip the dataset to the project directory.
wget http://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip
unzip MNIST_Data.zip
Model Definition
import os
import mindspore as ms
import mindspore.context as context
import mindspore.dataset as ds
import mindspore.dataset.transforms as C
import mindspore.dataset.vision as CV
import mindspore.nn as nn
from mindspore.common import dtype as mstype
from mindspore.dataset.vision import Inter
from mindspore.train import Accuracy
from mindspore.train import Model, LossMonitor
from mindspore.train.callback import OnRequestExit
from mindspore.common.initializer import TruncatedNormal
from mindspore.communication.management import init
from mindspore.context import ParallelMode
context.set_context(mode=context.GRAPH_MODE)
# dataset
DATASET_PATH = "./MNIST_Data"
def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
"""
create dataset for train or test
"""
# define dataset
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081
# define map operations
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
# apply map operations on images
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
# apply DatasetOps
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size)
return mnist_ds
# define the traning model
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
"""weight initial for conv layer"""
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode="valid")
def fc_with_initialize(input_channels, out_channels):
"""weight initial for fc layer"""
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable():
"""weight initial"""
return TruncatedNormal(0.02)
class LeNet5(nn.Cell):
def __init__(self, num_class=10, channel=1):
super(LeNet5, self).__init__()
self.num_class = num_class
self.conv1 = conv(channel, 6, 5)
self.conv2 = conv(6, 16, 5)
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
self.fc2 = fc_with_initialize(120, 84)
self.fc3 = fc_with_initialize(84, self.num_class)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
def construct(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x
Environment Variable And Callback Function
Environment Variable
Using Training process Graceful Exit requires setting the environment variable MS_ENABLE_GRACEFUL_EXIT
to 1
. This environment variable can control the synchronization operator into the graph to ensure that all training processes can exit synchronously.
export MS_ENABLE_GRACEFUL_EXIT=1
Callback Function
In addition to the above of environment variable, it also needs to configure the callback function OnRequestExit
, and passes the parameter config_file
to provide the path of the graceful exit json file. This callback function will check if there is a graceful exit json file in the specified path at every training step begin. If the file exists, and the GracefulExit
is 1
, it will save checkpoint and exit training process at current step end.
The GracefulExit
in the Json file is dynamically configured during training. Generally, the keyword is modified when suboptimal devices exist in the training cluster and the training process needs to exit.
# key in json file:‘{“GracefulExit”: 1}’
config_json = r"./graceful_exit.json"
# callback function
cb = OnRequestExit(file_name="LeNet", config_file=config_json)
When configuring the OnRequestExit
callback function, you can configure saving mindir, saving checkpoint, and other configuration parameters as required. For more details, please refer to the documentation OnRequestExit .
def graceful_exit_case():
# initialize
device_num = 8
context.set_context(mode=context.GRAPH_MODE)
ms.set_device("Ascend")
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_num)
init()
# model building
network = LeNet5(10)
ds_train = create_dataset(os.path.join(DATASET_PATH, "train"), 32, 1)
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
# the dependency file `reset.json`, like `{"GracefulExit": 1}`
reset_json = r"./graceful_exit.json"
# callback func
cb = OnRequestExit(file_name="LeNet", config_file=reset_json)
# train
model.train(1, ds_train, callbacks=[cb, LossMonitor()], dataset_sink_mode=False)
Starting Training
Using msrun
to start training.
msrun --worker_num=8 --local_worker_num=8 --master_addr=127.0.0.1 --master_port=10970 --join=True --log_dir=./comm_subgraph_logs graceful_exit_case.py
Analyzing The Results
After training ends, the following WARNING log will be printed: Graceful exit is triggered, stop training
. Eight directories named rank_0
to rank_7
will be generated in the current execution directory, each containing a LeNet_train.ckpt
file (if saving checkpoints is set in OnRequestExit
).
./rank_0
├── LeNet_train.ckpt
└── LeNet_train.mindir
./rank_1
├── LeNet_train.ckpt
└── LeNet_train.mindir
./rank_2
├── LeNet_train.ckpt
└── LeNet_train.mindir
./rank_3
├── LeNet_train.ckpt
└── LeNet_train.mindir
./rank_4
├── LeNet_train.ckpt
└── LeNet_train.mindir
./rank_5
├── LeNet_train.ckpt
└── LeNet_train.mindir
./rank_6
├── LeNet_train.ckpt
└── LeNet_train.mindir
./rank_7
├── LeNet_train.ckpt
└── LeNet_train.mindir
Notes
If TrainOneStepCell
is not overridden, you only need to configure the MS_ENABLE_GRACEFUL_EXIT
environment variable, the OnRequestExit
callback function, and modify the graceful exit json file as needed at a certain point during training.
If the network model requires overriding TrainOneStepCell
:
The new method inherits from
TrainOneStepCell
, and the followingif
conditional branch code is added in theconstruct
method to ensure the graceful exit feature works properly.class TrainOneStepCellWithABC(TrainOneStepCell): def __init__(self, ...): ... def construct(self, *inputs): ... grads = self.grad(self.network, self.weights)(*inputs, sens) if self.use_graceful_exit: grads = self.graceful_exit.exit_by_request(grads, self.init_param, self.exit_param) loss = F.depend(loss, self.optimizer(grads)) ...
The new method is not inherits from
TrainOneStepCell
, you need add the following code in__init__
method(don't change parameter's name), and using in theconstruct
method.from mindspore.utils import ExitByRequest class TrainOneStepCellWithABC(Cell): def __init__(self, ...): ... self.use_graceful_exit = os.environ.get("MS_ENABLE_GRACEFUL_EXIT") == "1" if self.use_graceful_exit: self.graceful_exit = ExitByRequest() self.exit_param = Parameter(Tensor(False, mstype.bool_), name="graceful_exit") # update by reduce value self.init_param = Parameter(Tensor([0], mstype.int32), name="graceful_init") # update by config file def construct(self, *inputs): ... if self.use_graceful_exit: grads = self.graceful_exit.exit_by_request(grads, self.init_param, self.exit_param) loss = F.depend(loss, self.optimizer(grads)) ...