Tensor and Parameter

View Source On Gitee

Tensor

A Tensor is a basic data structure in MindSpore network operations whose functions is like a Numpy array (ndarray). MindSpore uses Tensor to represent the data passed in the neural network.

For operations such as Tensor creation, Tensor operations, and Tensor to NumPy conversion, see Tensor Tensor.

Tensor Index Support

Single-level and multi-level Tensor indexing is supported on both PyNative and Graph mode.

Index Values

The index value can be int, bool, None, ellipsis, slice, Tensor, List, or Tuple.

  • int index value

    Single-level and multi-level int index values are supported. The single-level int index value is tensor_x[int_index], and the multi-level int index value is tensor_x[int_index0][int_index1]....

    The int index value is obtained on dimension 0 and is less than the length of dimension 0. After the position data corresponding to dimension 0 is obtained, dimension 0 is eliminated.

    For example, if a single-level int index value is obtained for a tensor whose shape is (3, 4, 5), the obtained shape is (4, 5).

    The multi-level index value can be understood as obtaining the current-level int index value based on the previous-level index value.

    For example:

    import mindspore as ms
    import mindspore.numpy as np
    tensor_x = ms.Tensor(np.arange(2 * 3 * 2).reshape((2, 3, 2)))
    data_single = tensor_x[0]
    data_multi = tensor_x[0][1]
    print('data_single:')
    print(data_single)
    print('data_multi:')
    print(data_multi)
    

    The result is as follows:

    data_single:
    [[0 1]
     [2 3]
     [4 5]]
    data_multi:
    [2 3]
    
  • bool index value

    Single-level and multi-level bool index values are supported. The single-level bool index value is tensor_x[True], and the multi-level True index value is tensor_x[True][True]....

    The True index value operation is obtained on dimension 0. After all data is obtained, a dimension is extended on the axis=0 axis. The length of the dimension is 1. False will introduce 0 in the shape, thus only Ture is supported now.

    For example, if a single-level True index value is obtained from a tensor whose shape is (3, 4, 5), the obtained shape is (1, 3, 4, 5).

    The multi-level index value can be understood as obtaining the current-level bool index value based on the previous-level index value.

    For example:

    import mindspore as ms
    import mindspore.numpy as np
    tensor_x = ms.Tensor(np.arange(2 * 3).reshape((2, 3)))
    data_single = tensor_x[True]
    data_multi = tensor_x[True][True]
    print('data_single:')
    print(data_single)
    print('data_multi:')
    print(data_multi)
    

    The result is as follows:

    data_single:
    [[[0 1 2]
      [3 4 5]]]
    data_multi:
    [[[[0 1 2]
       [3 4 5]]]]
    
  • None index value

    The None index value is the same as the True index value. For details, see the True index value.

  • ellipsis index value

    Single-level and multi-level ellipsis index values are supported. The single-level ellipsis index value is tensor_x[...], and the multi-level ellipsis index value is tensor_x[...][...]....

    The ellipsis index value is obtained on all dimensions to get the original data without any change. Generally, it is used as a component of the Tuple index. The Tuple index is described as follows.

    For example, if the ellipsis index value is obtained for a tensor whose shape is (3, 4, 5), the obtained shape is still (3, 4, 5).

    For example:

    import mindspore as ms
    import mindspore.numpy as np
    tensor_x = ms.Tensor(np.arange(2 * 3).reshape((2, 3)))
    data_single = tensor_x[...]
    data_multi = tensor_x[...][...]
    print('data_single:')
    print(data_single)
    print('data_multi:')
    print(data_multi)
    

    The result is as follows:

    data_single:
    [[0 1 2]
     [3 4 5]]
    data_multi:
    [[0 1 2]
     [3 4 5]]
    
  • slice index value

    Single-level and multi-level slice index values are supported. The single-level slice index value is tensor_x[slice_index], and the multi-level slice index value is tensor_x[slice_index0][slice_index1]....

    The slice index value is obtained on dimension 0. The element of the sliced position on dimension 0 is obtained. The slice does not reduce the dimension even if the length is 1, which is different from the int index value.

    For example, tensor_x[0:1:1] != tensor_x[0], because shape_former = (1,) + shape_latter.

    The multi-level index value can be understood as obtaining the current-level slice index value based on the previous-level index value.

    slice consists of start, stop, and step. The default value of start is 0, the default value of stop is the length of the dimension, and the default value of step is 1.

    Example: tensor_x[:] == tensor_x[0:length:1].

    For example:

    import mindspore as ms
    import mindspore.numpy as np
    tensor_x = ms.Tensor(np.arange(4 * 2 * 2).reshape((4, 2, 2)))
    data_single = tensor_x[1:4:2]
    data_multi = tensor_x[1:4:2][1:]
    print('data_single:')
    print(data_single)
    print('data_multi:')
    print(data_multi)
    

    The result is as follows:

    data_single:
    [[[ 4  5]
      [ 6  7]]
    
     [[12 13]
      [14 15]]]
    data_multi:
    [[[12 13]
      [14 15]]]
    
  • Tensor index value

    Single-level and multi-level Tensor index values are supported. The single-level Tensor index value is tensor_x[tensor_index], and the multi-level Tensor index value is tensor_x[tensor_index0][tensor_index1]....

    The Tensor index value is obtained on dimension 0, and the element in the corresponding position of dimension 0 is obtained.

    The data type of the Tensor index can be int and bool.

    When the data type is int, it must be one of int8, int16, int32, and int64. The element cannot be a negative number, and the value must be less than the length of dimension 0.

    The Tensor index value is obtained by data_shape = tensor_inde4x.shape + tensor_x.shape[1:].

    For example, if the index value is obtained for a tensor whose shape is (6, 4, 5) by using a tensor whose shape is (2, 3), the obtained shape is (2, 3, 4, 5).

    When the data type is bool, the dimension of the result obtained by the Tensor index is tensor_x.ndim - tensor_index.ndim + 1 .

    Let the number of True in tensor_index be num_true and the shape of tensor_x be (N0, N1, ... Ni-1, Ni, Ni+1, ..., Nk) , the shape of tensor_index is (N0, N1, ... Ni-1), then the shape of the returned value is (num_true, Ni+1, Ni+2, ... , Nk).

    For example:

    from mindspore import dtype as mstype
    import mindspore as ms
    import mindspore.numpy as np
    tensor_x = ms.Tensor([1, 2, 3])
    tensor_index = ms.Tensor([True, False, True], dtype=mstype.bool_)
    output = tensor_x[tensor_index]
    print(output)
    

    The result is as follows:

    [1 3]
    

    The multi-level index value can be understood as obtaining the current-level Tensor index value based on the previous-level index value.

    For example:

    from mindspore import dtype as mstype
    import mindspore as ms
    import mindspore.numpy as np
    tensor_x = ms.Tensor(np.arange(4 * 2 * 3).reshape((4, 2, 3)))
    tensor_index0 = ms.Tensor(np.array([[1, 2], [0, 3]]), mstype.int32)
    tensor_index1 = ms.Tensor(np.array([[0, 0]]), mstype.int32)
    data_single = tensor_x[tensor_index0]
    data_multi = tensor_x[tensor_index0][tensor_index1]
    print('data_single:')
    print(data_single)
    print('data_multi:')
    print(data_multi)
    

    The result is as follows:

    data_single:
    [[[[ 6  7  8]
       [ 9 10 11]]
    
      [[12 13 14]
       [15 16 17]]]
    
    
     [[[ 0  1  2]
       [ 3  4  5]]
    
      [[18 19 20]
       [21 22 23]]]]
    data_multi:
    [[[[[ 6  7  8]
        [ 9 10 11]]
    
       [[12 13 14]
        [15 16 17]]]
    
    
      [[[ 6  7  8]
        [ 9 10 11]]
    
       [[12 13 14]
        [15 16 17]]]]]
    
  • List index value

    Single-level and multi-level Tensor index values are supported. The single-level List index value is tensor_x[list_index], and the multi-level List index value is tensor_x[list_index0][list_index1]....

    The List index value is obtained on dimension 0, and the element in the corresponding position of dimension 0 is obtained.

    The data type of the List index must be all bool, all int or mixed of them. The List elements of int type must be in the range of [-dimension_shape, dimension_shape-1] and the count of List elements with bool type must be the same as the dimension_shape of dimension 0 and will perform as to filter the corresponding element of the Tenson data. If the above two types appear simultaneously, the List elements with the bool type will be converted to 1/0 for True/False.

    The Tensor index value is obtained by data_shape = tensor_inde4x.shape + tensor_x.shape[1:].

    For example, if the index value is obtained for a tensor whose shape is (6, 4, 5) by using a tensor whose shape is (2, 3), the obtained shape is (2, 3, 4, 5).

    The multi-level index value can be understood as obtaining the current-level Tensor index value based on the previous-level index value.

    For example:

    import mindspore as ms
    import mindspore.numpy as np
    tensor_x = ms.Tensor(np.arange(4 * 2 * 3).reshape((4, 2, 3)))
    list_index0 = [1, 2, 0]
    list_index1 = [True, False, True]
    data_single = tensor_x[list_index0]
    data_multi = tensor_x[list_index0][list_index1]
    print('data_single:')
    print(data_single)
    print('data_multi:')
    print(data_multi)
    

    The result is as follows:

    data_single:
    [[[ 6  7  8]
      [ 9 10 11]]
    
     [[12 13 14]
      [15 16 17]]
    
     [[ 0  1  2]
      [ 3  4  5]]]
    data_multi:
    [[[ 6  7  8]
      [ 9 10 11]]
    
     [[ 0  1  2]
      [ 3  4  5]]]
    
  • Tuple index value

    The data type of the Tuple index can be int, bool, None, slice, ellipsis, Tensor, List, or Tuple. Single-level and multi-level Tuple index values are supported. For the single-level Tuple index, the value is tensor_x[tuple_index]. For the multi-level Tuple index, the value is tensor_x[tuple_index0][tuple_index1].... The regulations of elements List and Tuple are the same as that of single index List index. The regulations of others are the same to the responding single element type.

    Elements in the Tuple index can be sort out by Basic Index or Advanced Index. slice, ellipsis, int and None are Basic Index and bool, Tensor, List, Tuple are Advanced Index. In the Getitem Progress, all the elements of the Advanced Index type will be broadcast to the same shape, and the final shape will be inserted to the first Advanced Index element's position if they are continuous, else they will be inserted to the 0 position.

    In the index, the None elements will expand the corresponding dimensions, bool elements will expand the corresponding dimension and be broadcast with the other Advanced Index element. The others elements except the type of ellipsis, bool, and None, will correspond to each position dimension. That is, the 0th element in Tuple operates the 0th dimension, and the 1st element operates the 1st dimension. The index rule of each element is the same as the index value rule of the element type.

    The Tuple index contains a maximum of one ellipsis. The first half of the ellipsis index elements correspond to the Tensor dimensions starting from the dimension 0, and the second half of the index elements correspond to the Tensor dimensions starting from the last dimension. If other dimensions are not specified, all dimensions are obtained.

    The data type of Tensor contained in the element can be int or bool, and int type must be one of (int8, int16, int32, int64). In addition, the value of Tensor element must be non-negative and less than the length of the operation dimension.

    For example, tensor_x[0:3, 1, tensor_index] == tensor_x[(0:3, 1, tensor_index)], because 0:3, 1, tensor_index is a Tuple.

    The multi-level index value can be understood as obtaining the current-level Tuple index value based on the previous-level index value.

    For example:

    from mindspore import dtype as mstype
    import mindspore as ms
    import mindspore.numpy as np
    tensor_x = ms.Tensor(np.arange(2 * 3 * 4).reshape((2, 3, 4)))
    tensor_index = ms.Tensor(np.array([[1, 2, 1], [0, 3, 2]]), mstype.int32)
    data = tensor_x[1, 0:1, tensor_index]
    print('data:')
    print(data)
    

    The result is as follows:

    data:
    [[[13]
      [14]
      [13]]
    
     [[12]
      [15]
      [14]]]
    

Index Value Assignment

For a case like: tensor_x[index] = value, the type of the index can be int, bool, ellipsis, slice, None, Tensor, List, orTuple.

The type of the assigned value can be Number, Tuple, List, or Tensor, the value will be converted to Tensor and casted to the same dtype as the original tensor (tensor_x) before being assigned.

When value is Number, all position elements obtained from the tensor_x[index] will be updated to Number.

When value is a tensor whose type is Tuple, List or Tensor and only contains Number, the value.shape needs to be able to be broadcasted to tensor_x[index].shape. After the value' is broadcasted and casted to Tensor, the elements with the position tensor_x[index] will be updated with the value broadcast(Tensor(value)).

When value is Tuple/List, and contains mixtures of Number, Tuple, List and Tensor, only one-dimensional Tuple and List are currently supported.

When value is Tuple or List, and contains Tensor, all the non-Tensor elements in value will be converted to Tensor first, and then these Tensor values are packed on the axis=0 axis and become new Tensor. In this case, the value is assigned according to the rule of assigning the value to Tensor. All Tensors must have the same dtype.

Index value assignment can be understood as assigning values to indexed position elements based on certain rules. All index value assignment does not change the original shape of Tensor.

If there are multiple index elements in indices that correspond to the same position, the value of that position in the output will be nondeterministic. For more details, please see:TensorScatterUpdate

Only single-bracket indexing is supported (tensor_x[index] = value), multi-bracket(tensor_x[index1][index2]... = value) is not supported.

  • int index value assignment

    Single-level int index value assignments are supported. The single-level int index value assignment is tensor_x[int_index] = u.

    For example:

    import mindspore.numpy as np
    tensor_x = np.arange(2 * 3).reshape((2, 3)).astype(np.float32)
    tensor_y = np.arange(2 * 3).reshape((2, 3)).astype(np.float32)
    tensor_x[1] = 88.0
    tensor_y[1] = np.array([66, 88, 99]).astype(np.float32)
    print('tensor_x:')
    print(tensor_x)
    print('tensor_y:')
    print(tensor_y)
    

    The result is as follows:

    tensor_x:
    [[ 0.  1.  2.]
     [88. 88. 88.]]
    tensor_y:
    [[ 0.  1.  2.]
     [66. 88. 99.]]
    
  • bool index value assignment

    Single-level bool index value assignments are supported. The single-level int index value assignment is tensor_x[bool_index] = u.

    For example:

    import mindspore.numpy as np
    tensor_x = np.arange(2 * 3).reshape((2, 3)).astype(np.float32)
    tensor_y = np.arange(2 * 3).reshape((2, 3)).astype(np.float32)
    tensor_z = np.arange(2 * 3).reshape((2, 3)).astype(np.float32)
    tensor_x[True] = 88.0
    tensor_y[True]= np.array([66, 88, 99]).astype(np.float32)
    tensor_z[True] = (66, 88, 99)
    print('tensor_x:')
    print(tensor_x)
    print('tensor_y:')
    print(tensor_y)
    print('tensor_z:')
    print(tensor_z)
    

    The result is as follows:

    tensor_x:
    [[88. 88. 88.]
     [88. 88. 88.]]
    tensor_y:
    [[66. 88. 99.]
     [66. 88. 99.]]
    tensor_z:
    [[66. 88. 99.]
     [66. 88. 99.]]
    
  • ellipsis index value assignment

    Single-level ellipsis index value assignments are supported. The single-level ellipsis index value assignment is tensor_x[...] = u.

    For example:

    import mindspore.numpy as np
    tensor_x = np.arange(2 * 3).reshape((2, 3)).astype(np.float32)
    tensor_y = np.arange(2 * 3).reshape((2, 3)).astype(np.float32)
    tensor_z = np.arange(2 * 3).reshape((2, 3)).astype(np.float32)
    tensor_x[...] = 88.0
    tensor_y[...] = np.array([[22, 44, 55], [22, 44, 55]])
    tensor_z[...] = ([11, 22, 33], [44, 55, 66])
    print('tensor_x:')
    print(tensor_x)
    print('tensor_y:')
    print(tensor_y)
    print('tensor_z:')
    print(tensor_z)
    

    The result is as follows:

    tensor_x:
    [[88. 88. 88.]
     [88. 88. 88.]]
    tensor_y:
    [[22. 44. 55.]
     [22. 44. 55.]]
    tensor_z:
    [[11. 22. 33.]
     [44. 55. 66.]]
    
  • slice index value assignment

    Single-level slice index value assignments are supported. The single-level slice index value assignment is tensor_x[slice_index] = u.

    For example:

    import mindspore.numpy as np
    tensor_x = np.arange(3 * 3).reshape((3, 3)).astype(np.float32)
    tensor_y = np.arange(3 * 3).reshape((3, 3)).astype(np.float32)
    tensor_z = np.arange(3 * 3).reshape((3, 3)).astype(np.float32)
    tensor_k = np.arange(3 * 3).reshape((3, 3)).astype(np.float32)
    tensor_x[0:1] = 88.0
    tensor_y[0:2] = 88.0
    tensor_z[0:2] = np.array([[11, 12, 13], [11, 12, 13]]).astype(np.float32)
    tensor_k[0:2] = ([11, 12, 13], (14, 15, 16))
    print('tensor_x:')
    print(tensor_x)
    print('tensor_y:')
    print(tensor_y)
    print('tensor_z:')
    print(tensor_z)
    print('tensor_k:')
    print(tensor_k)
    

    The result is as follows:

    tensor_x:
    [[88. 88. 88.]
     [ 3.  4.  5.]
     [ 6.  7.  8.]]
    tensor_y:
    [[88. 88. 88.]
     [88. 88. 88.]
     [ 6.  7.  8.]]
    tensor_z:
    [[11. 12. 13.]
     [11. 12. 13.]
     [ 6.  7.  8.]]
    tensor_k:
    [[11. 12. 13.]
     [14. 15. 16.]
     [ 6.  7.  8.]]
    
  • None index value assignment

    Single-level None index value assignments are supported. The single-level int index value assignment is tensor_x[none_index] = u.

    For example:

    import mindspore.numpy as np
    tensor_x = np.arange(2 * 3).reshape((2, 3)).astype(np.float32)
    tensor_y = np.arange(2 * 3).reshape((2, 3)).astype(np.float32)
    tensor_z = np.arange(2 * 3).reshape((2, 3)).astype(np.float32)
    tensor_x[None] = 88.0
    tensor_y[None]= np.array([66, 88, 99]).astype(np.float32)
    tensor_z[None] = (66, 88, 99)
    print('tensor_x:')
    print(tensor_x)
    print('tensor_y:')
    print(tensor_y)
    print('tensor_z:')
    print(tensor_z)
    

    The result is as follows:

    tensor_x:
    [[88. 88. 88.]
     [88. 88. 88.]]
    tensor_y:
    [[66. 88. 99.]
     [66. 88. 99.]]
    tensor_z:
    [[66. 88. 99.]
     [66. 88. 99.]]
    
  • Tensor index value assignment

    Single-level Tensor index value assignments are supported. The single-level Tensor index value assignment is tensor_x[tensor_index] = u.

    Currently, the supported index types are int and bool .

    An example of the int type is as follows:

    import mindspore.numpy as np
    tensor_x = np.arange(3 * 3).reshape((3, 3)).astype(np.float32)
    tensor_y = np.arange(3 * 3).reshape((3, 3)).astype(np.float32)
    tensor_z = np.arange(3 * 3).reshape((3, 3)).astype(np.float32)
    tensor_index = np.array([[2, 0, 2], [0, 2, 0], [0, 2, 0]], np.int32)
    tensor_x[tensor_index] = 88.0
    tensor_y[tensor_index] = np.array([11.0, 12.0, 13.0]).astype(np.float32)
    tensor_z[tensor_index] = [11, 12, 13]
    print('tensor_x:')
    print(tensor_x)
    print('tensor_y:')
    print(tensor_y)
    print('tensor_z:')
    print(tensor_z)
    

    The result is as follows:

    tensor_x:
    [[88. 88. 88.]
     [ 3.  4.  5.]
     [88. 88. 88.]]
    tensor_y:
    [[11. 12. 13.]
     [ 3.  4.  5.]
     [11. 12. 13.]]
    tensor_z:
    [[11. 12. 13.]
     [ 3.  4.  5.]
     [11. 12. 13.]]
    

    An example of the bool type is as follows:

    from mindspore import dtype as mstype
    import mindspore as ms
    tensor_x = ms.Tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]], mstype.float32)
    tensor_index = ms.Tensor([True, False, True], mstype.bool_)
    tensor_x[tensor_index] = -1
    print(tensor_x)
    

    The result is as follows:

    [[-1. -1. -1.]
     [ 3.  4.  5.]
     [-1. -1. -1.]]
    
  • List index value assignment

    single-level List index value assignments are supported. The single-level List index value assignment is tensor_x[list_index] = u.

    The List index value assignment is the same as that of the List index value.

    For example:

    import mindspore.numpy as np
    tensor_x = np.arange(3 * 3).reshape((3, 3)).astype(np.float32)
    tensor_y = np.arange(3 * 3).reshape((3, 3)).astype(np.float32)
    tensor_index = np.array([[0, 1], [1, 0]]).astype(np.int32)
    tensor_x[[0,1]] = 88.0
    tensor_y[[True, False, False]] = np.array([11, 12, 13]).astype(np.float32)
    print('tensor_x:')
    print(tensor_x)
    print('tensor_y:')
    print(tensor_y)
    

    The result is as follows:

    tensor_x:
    [[88. 88. 88.]
     [88. 88. 88.]
     [ 6.  7.  8.]]
    tensor_y:
    [[11. 12. 13.]
     [ 3.  4.  5.]
     [ 6.  7.  8.]]
    
  • Tuple index value assignment

    single-level Tuple index value assignments are supported. The single-level Tuple index value assignment is tensor_x[tuple_index] = u.

    The Tuple index value assignment is the same as that of the Tuple index value, but None type is not supported now.

    For example:

    import mindspore.numpy as np
    tensor_x = np.arange(3 * 3).reshape((3, 3)).astype(np.float32)
    tensor_y = np.arange(3 * 3).reshape((3, 3)).astype(np.float32)
    tensor_z = np.arange(3 * 3).reshape((3, 3)).astype(np.float32)
    tensor_index = np.array([0, 1]).astype(np.int32)
    tensor_x[1, 1:3] = 88.0
    tensor_y[1:3, tensor_index] = 88.0
    tensor_z[1:3, tensor_index] = np.array([11, 12]).astype(np.float32)
    print('tensor_x:')
    print(tensor_x)
    print('tensor_y:')
    print(tensor_y)
    print('tensor_z:')
    print(tensor_z)
    

    The result is as follows:

    tensor_x:
    [[ 0.  1.  2.]
     [ 3. 88. 88.]
     [ 6.  7.  8.]]
    tensor_y:
    [[ 0.  1.  2.]
     [88. 88.  5.]
     [88. 88.  8.]]
    tensor_z:
    [[ 0.  1.  2.]
     [11. 12.  5.]
     [11. 12.  8.]]
    

Index Value Augmented-assignment

Index value augmented-assignment supports seven augmented_assignment operations: +=, -=, *=, /=, %=, **=, and //=. The rules and constraints of index and value are the same as index assignment. The index value supports eight types: int, bool, ellipsis, slice, None, tensor, list and tuple. The assignment value supports four types: Number, Tensor, Tuple and List.

Index value augmented-assignment can be regarded as taking the value of the position elements to be indexed according to certain rules, and then performing operator operation with value. Finally, assign the operation result to the origin Tensor. All index augmented-assignments will not change the shape of the original Tensor.

If there are multiple index elements in indices that correspond to the same position, the value of that position in the output will be nondeterministic. For more details, please see:TensorScatterUpdate

Currently indices that contain True, False and None are not supported.

  • Rules and constraints:

    Compared with index assignment, the process of value and operation is increased. The constraint rules of index are the same as index in Index Value, and support Int, Bool, Tensor, Slice, Ellipse, None, List and Tuple. The values of Int contained in the above types of data should be in [-dim_size, dim_size-1] within the closed range.

    The constraint rules of value in the operation process are the same as those of value in index assignment. The type of value needs to be one of (Number, Tensor, List, Tuple). And if value's type is not number, value.shape should be able to broadcast to tensor_x[index].shape.

    For example:

    import mindspore as ms
    tensor_x = ms.Tensor(np.arange(3 * 4).reshape(3, 4).astype(np.float32))
    tensor_y = ms.Tensor(np.arange(3 * 4).reshape(3, 4).astype(np.float32))
    tensor_x[[0, 1], 1:3] += 2
    tensor_y[[1], ...] -= [4, 3, 2, 1]
    print('tensor_x:')
    print(tensor_x)
    print('tensor_y:')
    print(tensor_y)
    

    The result is as follows:

    tensor_x:
    [[ 0.  3.  4.  3.]
     [ 4.  7.  8.  7.]
     [ 8.  9. 10. 11.]]
    tensor_y:
    [[ 0.  1.  2.  3.]
     [ 0.  2.  4.  6.]
     [ 8.  9. 10. 11.]]
    

Tensor View

MindSpore allows a tensor to be a view-class Operators of an existing tensor. View tensor shares the same underlying data with its base tensor. Supporting View avoids explicit data copy, thus allows us to do fast and memory efficient reshaping, slicing and element-wise operations."

For example, to get a view of an existing tensor t, you can call t.view(…).

from mindspore import Tensor
import numpy as np
t = Tensor(np.array([[1, 2, 3], [2, 3, 4]], dtype=np.float32))
b = t.view((3, 2))
# Modifying view tensor changes base tensor as well.
b[0][0] = 100
print(t[0][0])
# 100

Since views share underlying data with its base tensor, if you edit the data in the view, it will be reflected in the base tensor as well.

Typically a MindSpore op returns a new tensor as output, e.g. add(). But in case of view ops, outputs are views of input tensors to avoid unnecessary data copy. No data movement occurs when creating a view, view tensor just changes the way it interprets the same data. Taking a view of contiguous tensor could potentially produce a non-contiguous tensor. Users should pay additional attention as contiguity might have implicit performance impact. transpose() is a common example.

from mindspore import Tensor
import numpy as np
base = Tensor([[0, 1], [2, 3]])
base.is_contiguous()
# True
t = base.transpose(1, 0) # t is a view of base. No data movement happened here.
t.is_contiguous()
# False
# To get a contiguous tensor, call `.contiguous()` to enforce
# copying data when `t` is not contiguous.
c = t.contiguous()
c.is_contiguous()
# True

view-class Operators

For reference, here’s a full list of view ops in MindSpore:

broadcast_to()

diagonal()

expand_as()

movedim()

narrow()

permute()

squeeze()

transpose()

t()

T

unsqueeze()

view()

view_as()

unbind()

split()

hsplit()

vsplit()

tensor_split()

swapaxes()

swapdims()

Parameter

Parameter is a special class of Tensor, which is a variable whose value can be updated during model training. MindSpore provides the mindspore.Parameter class for Parameter construction. In order to distinguish between Parameter for different purposes, two different categories of Parameter are defined below. In order to distinguish between Parameter for different purposes, two different categories of Parameter are defined below:

  • Trainable parameter. Tensor that is updated after the gradient is obtained according to the backward propagation algorithm during model training, and requires_grad needs to be set to True.

  • Untrainable parameters. Tensor that does not participate in backward propagation needs to update values (e.g. mean and var variables in BatchNorm), when requires_grad needs to be set to False.

Parameter is set to requires_grad=True by default.

We construct a simple fully-connected layer as follows:

import numpy as np
import mindspore
from mindspore import nn
from mindspore import ops
from mindspore import Tensor, Parameter

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.w = Parameter(Tensor(np.random.randn(5, 3), mindspore.float32), name='w') # weight
        self.b = Parameter(Tensor(np.random.randn(3,), mindspore.float32), name='b') # bias

    def construct(self, x):
        z = ops.matmul(x, self.w) + self.b
        return z

net = Network()

In the __init__ method of Cell, we define two parameters w and b and configure name for namespace management. Use self.attr in the construct method to call directly to participate in Tensor operations.

Obtaining Parameter

After constructing the neural network layer by using Cell+Parameter, we can use various methods to obtain the Parameter managed by Cell.

Obtaining a Single Parameter

To get a particular parameter individually, just call a member variable of a Python class directly.

print(net.b.asnumpy())
[-1.2192779  -0.36789745  0.0946381 ]

Obtaining a Trainable Parameter

Trainable parameters can be obtained by using the Cell.trainable_params method, and this interface is usually called when configuring the optimizer.

print(net.trainable_params())
[Parameter (name=w, shape=(5, 3), dtype=Float32, requires_grad=True), Parameter (name=b, shape=(3,), dtype=Float32, requires_grad=True)]

Obtaining All Parameters

Use the Cell.get_parameters() method to get all parameters, at which point a Python iterator will be returned.

print(type(net.get_parameters()))
<class 'generator'>

Or you can call Cell.parameters_and_names to return the parameter names and parameters.

for name, param in net.parameters_and_names():
    print(f"{name}:\n{param.asnumpy()}")
w:
[[ 4.15680408e-02 -1.20311625e-01  5.02573885e-02]
 [ 1.22175144e-04 -1.34980649e-01  1.17642188e+00]
 [ 7.57667869e-02 -1.74758151e-01 -5.19092619e-01]
 [-1.67846107e+00  3.27240258e-01 -2.06452996e-01]
 [ 5.72323874e-02 -8.27963874e-02  5.94243526e-01]]
b:
[-1.2192779  -0.36789745  0.0946381 ]

Modifying the Parameter

Modifying Parameter Values Directly

Parameter is a special kind of Tensor, so its value can be modified by using the Tensor index modification.

net.b[0] = 1.
print(net.b.asnumpy())
[ 1.         -0.36789745  0.0946381 ]

Overriding the Modified Parameter Values

The Parameter.set_data method can be called to override the Parameter by using a Tensor with the same Shape. This method is commonly used for Cell traversal initialization by using Initializer.

net.b.set_data(Tensor([3, 4, 5]))
print(net.b.asnumpy())
[3. 4. 5.]

Modifying Parameter Values During Runtime

In deep learning model training, the core function of parameters is the iterative updating of their values to optimize model performance. Due to the compiled design of MindSpore's Accelerating with Static Graphs, it is necessary at this point to use the mindspore.ops.assign interface to assign parameters. This method is commonly used in Custom Optimizer scenarios. The following is a simple sample modification of parameter values during runtime:

import mindspore as ms

@ms.jit
def modify_parameter():
    b_hat = ms.Tensor([7, 8, 9])
    ops.assign(net.b, b_hat)
    return True

modify_parameter()
print(net.b.asnumpy())
[7. 8. 9.]

Parameter Tuple

ParameterTuple, variable tuple, used to store multiple Parameter, is inherited from tuple tuples, and provides cloning function.

The following example provides the ParameterTuple creation and clone method:

from mindspore.common.initializer import initializer
from mindspore import ParameterTuple
# Create ParameterTuple
x = Parameter(default_input=ms.Tensor(np.arange(2 * 3).reshape((2, 3))), name="x")
y = Parameter(default_input=initializer('ones', [1, 2, 3], ms.float32), name='y')
z = Parameter(default_input=2.0, name='z')
params = ParameterTuple((x, y, z))

# Clone ParameterTuple
params_copy = params.clone("params_copy")

print(params)
print(params_copy)
(Parameter (name=x, shape=(2, 3), dtype=Int64, requires_grad=True), Parameter (name=y, shape=(1, 2, 3), dtype=Float32, requires_grad=True), Parameter (name=z, shape=(), dtype=Float32, requires_grad=True))
(Parameter (name=params_copy.x, shape=(2, 3), dtype=Int64, requires_grad=True), Parameter (name=params_copy.y, shape=(1, 2, 3), dtype=Float32, requires_grad=True), Parameter (name=params_copy.z, shape=(), dtype=Float32, requires_grad=True))