Source code for mindspore.common.tensor

# Copyright 2020-2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tensor implementation."""

__all__ = ['Tensor']

import abc
import math
import numbers
import numpy as np

from mindspore.communication.management import get_group_size
from mindspore.common._utils import is_shape_unknown
from mindspore.common.seed import get_seed
from mindspore import context
from mindspore import log as logger
from mindspore.common import dtype as mstype
from mindspore.common.hook_handle import _TensorHookHandle

from mindspore.common._utils import get_slice_num
from mindspore.common._register_for_tensor import tensor_operator_registry
from mindspore._c_expression import Tensor as Tensor_
from mindspore import _checkparam as validator
from mindspore._checkparam import check_is_number, is_stub_tensor, check_hook_fn
from mindspore._check_jit_forbidden_api import jit_forbidden_register
from mindspore.common.symbol import Symbol


np_types = (np.int8, np.int16, np.int32, np.int64,
            np.uint8, np.uint16, np.uint32, np.uint64, np.float16,
            np.float32, np.float64, np.bool_, np.complex64, np.complex128)


def _check_input_data_type(input_data):
    """Check the type of input_data for Tensor"""
    validator.check_value_type('input_data', input_data,
                               (Tensor_, Tensor, np.ndarray, np.str_, list, tuple, float, int, bool, complex, bytes),
                               'Tensor')
    valid_dtypes = (np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64,
                    np.float16, np.float32, np.float64, np.bool_, np.str_, np.complex64, np.complex128)
    if isinstance(input_data, np.ndarray) and input_data.dtype not in valid_dtypes and \
            input_data.dtype.kind != 'U' and input_data.dtype.kind != 'S' and \
            not (input_data.dtype.kind == 'V' and input_data.dtype.char == 'E'):  # Support np.str_ and np.bfloat16
        new_line = '\n'
        for index, x in np.ndenumerate(input_data):
            if np.array(x).dtype not in valid_dtypes:
                raise TypeError(f"initializing tensor by numpy array failed, because the "
                                f"element type '{type(x)}' of array is not supported.\n"
                                f"The element index in array: {index}, numpy array: {input_data}.\n"
                                f"The supported element type of ndarray as follow: "
                                f"{new_line}{new_line.join(map(str, valid_dtypes))}")
        raise TypeError(f"initializing tensor by numpy array failed, numpy array: {input_data}, "
                        f"data type: {input_data.dtype}.\nThe supported element type of ndarray "
                        f"as follow: {new_line}{new_line.join(map(str, valid_dtypes))}")
    if isinstance(input_data, np.ndarray) and input_data.dtype.kind == "S" and \
            input_data.shape and context.get_context("enable_ge"):
        raise TypeError("For binary string input in GE mode, the shape of the data must be ()")
    if isinstance(input_data, (tuple, list)) and np.array(input_data).dtype not in valid_dtypes:
        raise TypeError(
            f"For Tensor, the input_data is {input_data} that contain unsupported element.")


class _TensorMeta(type(Tensor_), abc.ABCMeta):
    """
    Meta class for Tensor. Used internally.
    """


[docs]def tensor(input_data=None, dtype=None, shape=None, init=None, internal=False, const_arg=False): """ Create a new Tensor in Cell.construct() or function decorated by @jit. In graph mode, MindSpore would create a new Tensor object at runtime dynamically, based on the `dtype` argument. Please refer to `Creating and Using Tensor <https://www.mindspore.cn/docs/en/master/model_train/program_form/static_graph.html#mindspore-user-defined-data-types>`_ . The difference between it and the Tensor class is that it adds `Annotation <https://www.mindspore.cn/docs/en/master/model_train/program_form/static_graph.html#annotation-type>`_ which can prevent the generation of AnyType compared to the Tensor class. The arguments and return values are the same as the Tensor class. Also see: :class:`mindspore.Tensor`. internally to indicate the type of the Tensor currently being created, Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore import jit, tensor >>> @jit ... def func(x): ... return tensor(x.asnumpy(), dtype=ms.float32) >>> x = tensor([1, 2, 3]) >>> y = func(x) >>> print(y) [1. 2. 3.] """ return Tensor(input_data, dtype, shape, init, internal, const_arg) # @jit.typing: () -> tensor_type[{dtype}]
[docs]class Tensor(Tensor_, metaclass=_TensorMeta): """ Tensor is a data structure that stores an n-dimensional array. Note: If `init` interface is used to initialize `Tensor`, the `Tensor.init_data` API needs to be called to load the actual data to `Tensor`. Warning: To convert dtype of a `Tensor`, it is recommended to use `Tensor.astype()` rather than `Tensor(sourceTensor, dtype=newDtype)`. Args: input_data (Union[Tensor, float, int, bool, tuple, list, numpy.ndarray]): The data to be stored. It can be another Tensor, Python number or NumPy ndarray. Default: ``None`` . dtype (:class:`mindspore.dtype`): Used to indicate the data type of the output Tensor. The argument should be defined in `mindspore.dtype`. If it is ``None`` , the data type of the output Tensor will be the same as the `input_data`. Default: ``None`` . shape (Union[tuple, list, int, :class:`mindspore.Symbol`]): Used to indicate the shape of the output Tensor. If `input_data` is available, `shape` doesn't need to be set. If ``None`` or `Symbol` exists in `shape` , a tensor of dynamic shape is created, `input_data` doesn't need to be set; if only integers exist in `shape`, a tensor of static shape is created, `input_data` or `init` must be set. Default: ``None`` . init (Initializer): The information of init data. `init` is used for delayed initialization in parallel mode, when using init, `dtype` and `shape` must be set. Default: ``None`` . internal (bool): Whether it is created by the framework. ``'True'`` means that the tensor is created by framework. ``'False'`` means that the tensor is created by user. Default: ``False`` . const_arg (bool): Whether the tensor is a constant when it is used for the argument of a network. Default: ``False`` . device(str): This parameter is reserved and does not need to be configured. Default: ``None`` . Outputs: Tensor. Note: The default value ``None`` of `input_data` works as a placeholder, it does not mean that we can create a NoneType Tensor. Tensor with `shape` contains 0 is not fully tested and supported. Examples: >>> import numpy as np >>> import mindspore as ms >>> from mindspore import Tensor >>> from mindspore.common.initializer import One >>> # initialize a tensor with numpy.ndarray >>> t1 = Tensor(np.zeros([1, 2, 3]), ms.float32) >>> print(t1) [[[0. 0. 0.] [0. 0. 0.]]] >>> print(type(t1)) <class 'mindspore.common.tensor.Tensor'> >>> print(t1.shape) (1, 2, 3) >>> print(t1.dtype) Float32 >>> >>> # initialize a tensor with a float scalar >>> t2 = Tensor(0.1) >>> print(t2) 0.1 >>> print(type(t2)) <class 'mindspore.common.tensor.Tensor'> >>> print(t2.shape) () >>> print(t2.dtype) Float32 >>> >>> # initialize a tensor with a tuple >>> t3 = Tensor((1, 2)) >>> print(t3) [1 2] >>> print(type(t3)) <class 'mindspore.common.tensor.Tensor'> >>> print(t3.shape) (2,) >>> print(t3.dtype) Int64 ... >>> # initialize a tensor with init >>> t4 = Tensor(shape = (1, 3), dtype=ms.float32, init=One()) >>> print(t4) [[1. 1. 1.]] >>> print(type(t4)) <class 'mindspore.common.tensor.Tensor'> >>> print(t4.shape) (1, 3) >>> print(t4.dtype) Float32 """ delta_seed = 0 def __init__(self, input_data=None, dtype=None, shape=None, init=None, internal=False, const_arg=False, device=None): self.init_finished = False if isinstance(input_data, (Tensor, Tensor_)) and dtype is not None: logger.info("It is suggested to use 'Tensor.astype()' to convert the dtype of a Tensor.") _cast = tensor_operator_registry.get("cast") input_data = _cast(input_data, dtype) if is_stub_tensor(input_data): input_data = input_data.stub_sync() if internal: if input_data is not None: Tensor_.__init__(self, input_data) else: if input_data is None and shape is None and init is None and dtype is not None: validator.check_type_name('dtype', dtype, mstype.number_type + (mstype.bool_, mstype.string), "Tensor") Tensor_.__init__(self, dtype, [-2]) logger.warning(f"For 'Tensor', if 'dtype' is not None, 'input_data', 'shape' " f"or 'init' must not be None.") else: # If input data is numpy number, convert it to np array if isinstance(input_data, np_types): input_data = np.array(input_data) if shape is not None: if isinstance(shape, numbers.Number): shape = (shape,) elif isinstance(shape, Symbol): self.symbolic_shape = [shape] shape = (None,) elif isinstance(shape, (list, tuple)) and any(isinstance(s, Symbol) for s in shape): self.symbolic_shape = [item.to_dict() if isinstance(item, Symbol) else item for item in shape] shape_without_symbol = (None if isinstance(item, Symbol) else item for item in shape) shape = list(shape_without_symbol) if isinstance(shape, list) else tuple(shape_without_symbol) _check_tensor_input(input_data, dtype, shape, init) # If input_data is tuple/list/numpy.ndarray, it's support in check_type method. if (isinstance(shape, (list, tuple)) and None in shape) or init is not None: shape = _check_tensor_dynamic_shape(dtype, shape, init) Tensor_.__init__(self, dtype, shape) else: _check_input_data_type(input_data) if dtype is not None: validator.check_type_name('dtype', dtype, mstype.number_type + (mstype.bool_, mstype.string), "Tensor") else: dtype = self._set_default_dtype(input_data, dtype) if isinstance(input_data, np.ndarray) and (not input_data.flags['FORC']): input_data = np.ascontiguousarray(input_data) if dtype is not None: Tensor_.__init__(self, input_data, dtype) else: Tensor_.__init__(self, input_data) validator.check_value_type('const_arg', const_arg, bool, 'Tensor') if device is not None and device != "CPU": raise ValueError(f"Only 'CPU' is supported for device, but got {device}.") self.const_arg = const_arg self.virtual_flag = False self.init = init self.init_finished = True # if cur Tensor is a index value of another Tensor, # parent_tensor_ set to another Tensor # index_of_parent_ will set to the index self.parent_tensor_ = None self.index_of_parent_ = None self.slice_num_of_persistent_data_ = None self.slice_shape_of_persistent_data_ = None # the auto gradient information self._grad = None self._grad_fn = None self._requires_grad = False self._retain_grad = False @classmethod def __subclasshook__(cls, sub): """ Subclass with stub_sync attr will be instance of Tensor """ if cls is Tensor: if any("stub_sync" in s.__dict__ for s in sub.__mro__): return True return NotImplemented @staticmethod def _set_default_dtype(input_data, dtype): """Set tensor default dtype""" if isinstance(input_data, (float, list, tuple)): if np.array(input_data).dtype == np.float64: return mstype.float32 if isinstance(input_data, (int, list, tuple)): if np.array(input_data).dtype in (np.int32, np.int64): return mstype.int64 return dtype def __deepcopy__(self, memodict): new_obj = Tensor(self) new_obj.init = self.init new_obj.virtual_flag = self.virtual_flag new_obj.const_arg = self.const_arg return new_obj def __repr__(self): if self.init_finished: Tensor_.data_sync(self, True) return Tensor_.__repr__(self) return '' def __eq__(self, other): if not isinstance(other, (int, float, Tensor)): return False return tensor_operator_registry.get('__eq__')(self, other) def __ne__(self, other): if not isinstance(other, (int, float, Tensor)): return True return tensor_operator_registry.get('__ne__')(self, other) def __hash__(self): return hash(id(self)) def __neg__(self): out = tensor_operator_registry.get('__neg__')(self) return out def __invert__(self): out = tensor_operator_registry.get('__logical_not__')(self) return out def __round__(self): out = tensor_operator_registry.get('round')(self) return out def __bool__(self): return bool(self._item()) @staticmethod def _convert_scalar_(data, func, message): if data.shape == (): return func(data) if data.shape == (1,): return func(data[0]) raise ValueError(message) def __int__(self): data = self.asnumpy() return self._convert_scalar_(data, int, "Only one element tensors can be converted to Python scalars") def __float__(self): data = self.asnumpy() return self._convert_scalar_(data, float, "Only one element tensors can be converted to Python scalars") def __index__(self): data = self.asnumpy() if data.dtype not in ["int8", "int16", "int32", "int64", "bool"]: raise ValueError("Only integer tensors of a single element can be converted to an index.") return self._convert_scalar_(data, int, "Only integer tensors of a single element can be converted to an index.") def __pos__(self): return self def __and__(self, other): if isinstance(other, (int, bool, float, Tensor)): return tensor_operator_registry.get('bitwise_and')(self, other) raise TypeError("Unsupported operand type(s) for &: 'Tensor' and '{}'".format(type(other))) def __xor__(self, other): if isinstance(other, (int, bool, float, Tensor)): return tensor_operator_registry.get('bitwise_xor')(self, other) raise TypeError("Unsupported operand type(s) for ^: 'Tensor' and '{}'".format(type(other))) def __or__(self, other): if isinstance(other, (int, bool, float, Tensor)): return tensor_operator_registry.get('bitwise_or')(self, other) raise TypeError("Unsupported operand type(s) for |: 'Tensor' and '{}'".format(type(other))) def __radd__(self, other): return self.__add__(other) def __rsub__(self, other): return tensor_operator_registry.get('__sub__')(other, self) def __mul__(self, other): return tensor_operator_registry.get('__mul__')(self, other) def __rmul__(self, other): return self.__mul__(other) def __matmul__(self, other): return tensor_operator_registry.get('__matmul__')(self, other) def __rmatmul__(self, other): return tensor_operator_registry.get('__matmul__')(other, self) def __imatmul__(self, other): return self.__matmul__(other) def __truediv__(self, other): return tensor_operator_registry.get('__truediv__')(self, other) def __rtruediv__(self, other): return tensor_operator_registry.get('__truediv__')(other, self) def __mod__(self, other): return tensor_operator_registry.get('__mod__')(self, other) def __rmod__(self, other): return tensor_operator_registry.get('__mod__')(other, self) def __imod__(self, other): return self.__mod__(other) def __rpow__(self, other): return tensor_operator_registry.get('__rpow__')(self, other) def __floordiv__(self, other): return tensor_operator_registry.get('__floordiv__')(self, other) def __rfloordiv__(self, other): return tensor_operator_registry.get('__floordiv__')(other, self) def __ifloordiv__(self, other): return self.__floordiv__(other) def __lt__(self, other): out = tensor_operator_registry.get('__lt__')(self, other) return out def __le__(self, other): out = tensor_operator_registry.get('__le__')(self, other) return out def __gt__(self, other): out = tensor_operator_registry.get('__gt__')(self, other) return out def __ge__(self, other): out = tensor_operator_registry.get('__ge__')(self, other) return out def __len__(self): out = tensor_operator_registry.get('shape')(self) if out: return out[0] raise TypeError("Not support len of a 0-D tensor") def __str__(self): if self.dtype == mstype.type_none: return "Unknown Tensor type!" return str(self.asnumpy()) def __getstate__(self): state = self.__dict__.copy() state["value"] = Tensor_.__getstate__(self) return state def __setstate__(self, state): if isinstance(state, tuple): value = state else: value = state.pop("value") self.__dict__.update(state) Tensor_.__setstate__(self, value) def __array__(self, dtype=None): """support create numpy array from tensor.""" if dtype is None: return self.asnumpy() return self.asnumpy().astype(dtype, copy=False) def __contains__(self, element): """support 'in' operator.""" if isinstance(element, (Tensor, numbers.Number)): return (element == self).any().item() return False def _getitem_origin(self, index): """__getitem__ origin process, called by TensorPy::TensorGetItem""" out = tensor_operator_registry.get('_tensor_getitem_origin')(self, index) if out is not self: out.parent_tensor_ = self out.index_of_parent_ = index return out def _setitem_origin(self, index, value): """__setitem__ origin process, called by TensorPy::TensorSetItem""" out = tensor_operator_registry.get('_tensor_setitem_origin')(self, index, value) if isinstance(out, tuple): if self.parent_tensor_ is not None and self.index_of_parent_ is not None: self.parent_tensor_.__setitem__(self.index_of_parent_, out[0]) return self return self self.assign_value(out) if self.parent_tensor_ is not None and self.index_of_parent_ is not None: self.parent_tensor_.__setitem__(self.index_of_parent_, self) return self def _getitem(self, index): """__getitem__ process, called by TensorPy::TensorGetItem""" return tensor_operator_registry.get('_tensor_getitem')(self, index) def _setitem(self, index, value): """__setitem__ process, called by TensorPy::TensorSetItem""" return tensor_operator_registry.get('_tensor_setitem')(self, index, value) @property def shape(self): """ For details, please refer to :func:`mindspore.ops.shape`. Examples: >>> from mindspore import Tensor >>> import numpy as np >>> x = Tensor(np.array([[1, 2], [3, 4]])) >>> print(x.shape) (2, 2) """ return self._shape @shape.setter def shape(self, shape_value): r""" Set the shape value. """ self._shape = shape_value @property def dtype(self): """ Return the dtype of the tensor (:class:`mindspore.dtype`). Examples: >>> from mindspore import Tensor >>> import numpy as np >>> x = Tensor(np.array([1, 2], dtype=np.float32)) >>> print(x.dtype) Float32 """ return self._dtype @property def size(self): """ For details, please refer to :func:`mindspore.ops.size`. Examples: >>> from mindspore import Tensor >>> import numpy as np >>> x = Tensor(np.array([[1, 2], [3, 4]])) >>> output = x.size >>> print(output) 4 """ return self._size @property def ndim(self): """ Return the number of tensor dimensions. Examples: >>> from mindspore import Tensor >>> import numpy as np >>> x = Tensor(np.array([[1, 2], [3, 4]])) >>> output = x.ndim >>> print(output) 2 """ return len(self._shape) @property def grad(self): r""" Get the gradient value. """ return self._grad @grad.setter def grad(self, grad): r""" Set the gradient value. """ self._grad = grad @property def grad_fn(self): r""" The function for backward. """ return self._grad_fn @grad_fn.setter def grad_fn(self, grad_fn): r""" Set the function for backward. """ self._grad_fn = grad_fn @property def is_leaf(self): r""" Whether the stub tensor is leaf. They will be a leaf if they have requires_grad and requires_grad is False, Or they were created by user. """ return self._requires_grad is False or self._grad_fn is None @property def requires_grad(self): r""" Whether the stub tensor need requires grad. """ return self._requires_grad @requires_grad.setter def requires_grad(self, requires_grad): r""" Mark the stub tensor whether need requires gradient. """ self._requires_grad = requires_grad def retain_grad(self): r""" Enable the stub tensor which is not non-leaf to have the grad during backward(). """ if not self._requires_grad: RuntimeError("can't retain_grad on Tensor that has requires_grad = False.") self._retain_grad = self._grad_fn is not None @property def retains_grad(self): r""" Is True if the stub tensor is non-leaf and its grad is enabled to be populated during backward(). """ return self._retain_grad def backward(self, grad=None): r""" Calculate the gradient. """ if grad is None: grad = Tensor(np.ones(self.shape), self.dtype) if self._grad_fn is not None: self._grad_fn.apply(grad) elif self._requires_grad: self._grad = grad @property def H(self): """ Returns a view of a matrix (2-D tensor) conjugated and transposed. x.H is equivalent to `mindspore.Tensor.swapaxes(0, 1).conj()` for complex matrices and `mindspore.Tensor.swapaxes(0, 1)` for real matrices. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import Tensor >>> import numpy as np >>> x = Tensor(np.array([[1, 2], [3, 4]])) >>> output = x.H >>> print(output) [[1 3] [2 4]] """ if self.ndim != 2: raise ValueError(f"For tensor.H only support 2-D Tensor, but got {self.ndim}-D.") output = self.swapaxes(0, 1) if self.dtype in (mstype.complex64, mstype.complex128): return output.conj() return output @property def has_init(self): """ Whether tensor is initialized. Examples: >>> from mindspore import Tensor >>> import numpy as np >>> x = Tensor(np.array([[1, 2], [3, 4]])) >>> output = x.has_init >>> print(output) False """ return self.init is not None @property def itemsize(self): """ Return the length of one tensor element in bytes. Examples: >>> from mindspore import Tensor >>> import numpy as np >>> x = Tensor(np.array([[1, 2], [3, 4]])) >>> output = x.itemsize >>> print(output) 8 """ return self._itemsize @property def strides(self): """ Return the tuple of bytes to step in each dimension when traversing a tensor. Examples: >>> from mindspore import Tensor >>> from mindspore import dtype as mstype >>> import numpy as np >>> x = Tensor(np.array([[1, 2], [3, 4]]), dtype=mstype.int64) >>> output = x.strides >>> print(output) (16, 8) """ return self._strides @property def nbytes(self): """ Return the total number of bytes taken by the tensor. Examples: >>> from mindspore import Tensor >>> import numpy as np >>> x = Tensor(np.array([[1, 2], [3, 4]])) >>> output = x.nbytes >>> print(output) 32 """ return self._nbytes @property def T(self): """ Return the transposed tensor. Examples: >>> from mindspore import Tensor >>> import numpy as np >>> x = Tensor(np.array([[1, 2], [3, 4]])) >>> output = x.T >>> print(output) [[1 3] [2 4]] """ if self.ndim <= 1: return self return self.transpose()
[docs] @staticmethod def from_numpy(array): """ Convert numpy array to Tensor. If the data is not C contiguous, the data will be copied to C contiguous to construct the tensor. Otherwise, The tensor will be constructed using this numpy array without copy. Args: array (numpy.array): The input array. Returns: Tensor, has the same data type as input array. Examples: >>> import numpy as np >>> from mindspore import Tensor >>> x = np.array([1, 2]) >>> output = Tensor.from_numpy(x) >>> print(output) [1 2] """ if isinstance(array, np.ndarray) and not array.flags['C_CONTIGUOUS']: array = np.ascontiguousarray(array) return Tensor(Tensor_.from_numpy(array))
[docs] def ndimension(self): r""" Alias for :attr:`mindspore.Tensor.ndim`. """ return len(self._shape)
[docs] @jit_forbidden_register def set_const_arg(self, const_arg=True): """ Specify whether the tensor is a constant when it is used for the argument of a network. Args: const_arg (bool): Whether the tensor is a constant when it is used for the argument of a network. Default: ``True`` . Returns: Tensor, has been specified whether to be a const network argument. Raises: TypeError: If `const_arg` is not a bool. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.array([[1,2,3],[4,5,6]], dtype=np.float32)) >>> x.set_const_arg(True) """ validator.check_value_type('const_arg', const_arg, bool, 'set_const_arg') self.const_arg = const_arg return self
[docs] def cauchy(self, median=0.0, sigma=1.0): r""" Fills the tensor with numbers drawn from the Cauchy distribution. It is defined as follows: .. math:: f(x)= \frac{1}{\pi} \frac{\sigma}{(x-median)^2 +\sigma^2} .. warning:: This is an experimental API that is subject to change or deletion. Args: median (float, optional): the location parameter, specifying the location of the peak of the distribution. Default: 0.0. sigma (float, optional): the scale parameter which specifies the half-width at half-maximum. Default: 1.0. Returns: Tensor. A Tensor with the same type and shape of input. Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> x = mindspore.Tensor(np.zeros((1, 2)), dtype=mindspore.float32) >>> x.cauchy() Tensor(shape=[1, 2], dtype=Float32, value= [[8.79836142e-01, 9.37541723e-01]]) """ out = tensor_operator_registry.get('cauchy')(list(self.shape), median, sigma)() return out.astype(self.dtype)
[docs] def log_normal(self, mean=1.0, std=2.0): r""" Fills the elements of the input tensor with log normal values initialized by given mean and std: .. math:: \text{f}(x;1.0,2.0)=\frac{1}{x\delta \sqrt[]{2\pi} }e^{-\frac{(\ln x-\mu )^2}{2\delta ^2} } where :math:`\mu`, :math:`\delta` is mean and standard deviation of lognormal distribution respectively. .. warning:: This is an experimental API that is subject to change or deletion. Args: mean (float, optional): the mean of normal distribution. With float data type. Default: 1.0. std (float, optional): the std of normal distribution. With float data type. Default: 2.0. Returns: Tensor. A Tensor with the same type and shape of input. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> x = mindspore.Tensor(np.array([[1, 2], [3, 4]]), dtype=mindspore.float32) >>> output = x.log_normal() >>> print(output) [[1.2788825 2.3305743] [14.944194 0.16303174]] """ return tensor_operator_registry.get('log_normal')(mean, std)(self)
[docs] @jit_forbidden_register def assign_value(self, value): """ Assign another tensor value to this tensor. Args: value (Tensor): Tensor for assignment. Returns: Tensor, Tensor that's been assigned. Examples: >>> from mindspore import Tensor >>> import numpy as np >>> x = Tensor([1, 2, 3, 4]) >>> y = Tensor(np.array([[1, 2], [3, 4]])) >>> output = x.assign_value(y) >>> print(x) [[1 2] [3 4]] """ if is_stub_tensor(value): value = value.stub_sync() self.assign_value_cpp(value) return self
[docs] def item(self): """ Return the value of this tensor as standard Python number. This only works for tensors with one element. Returns: A scalar, type is defined by the dtype of the Tensor. Raises: ValueError: If the count of value in tensor is more than one. TypeError: The type of element in tensor is not supported. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor >>> x = Tensor(1.2, ms.float32) >>> print(x.item()) 1.2 """ return self._item()
[docs] def itemset(self, *args): r""" Insert scalar into a tensor (scalar is cast to tensor's dtype, if possible). There must be at least 1 argument, and define the last argument as item. Then, tensor.itemset(\*args) is equivalent to :math:`Tensor[args] = item`. Args: args (Union[(numbers.Number), (int/tuple(int), numbers.Number)]): The arguments that specify the index and value. If `args` contain one argument (a scalar), it is only used in case tensor is of size 1. If `args` contains two arguments, the last argument is the value to be set and must be a scalar, the first argument specifies a single tensor element location. It is either an int or a tuple. Returns: A new tensor that doesn't affect the original tensor, with value set by :math:`Tensor[args] = item`. Raises: ValueError: If the length of the first argument is not equal to self.ndim. IndexError: If only one argument is provided, and the original Tensor is not scalar. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.array([[1,2,3],[4,5,6]], dtype=np.float32)) >>> print(x.itemset((0,1), 4)) [[1. 4. 3.] [4. 5. 6.]] >>> print(x) [[1. 2. 3.] [4. 5. 6.]] """ output = tensor_operator_registry.get('itemset')(self, *args) return output
def get_bytes(self): r""" Get raw data of tensor with type of bytes. Supported Platforms: ``CPU`` ``GPU`` ``Ascend`` Returns: Bytes of tensor. Examples: >>> import mindspore as ms >>> from mindspore import Tensor >>> x = ms.Tensor([1, 2, 3], ms.int16) >>> print(x.get_bytes()) b'\x01\x00\x02\x00\x03\x00' """ return Tensor_.get_bytes(self)
[docs] def asnumpy(self): """ Convert tensor to numpy array. Returns self tensor as a NumPy ndarray. This tensor and the returned ndarray share the same underlying storage. Changes to self tensor will be reflected in the ndarray. Returns: A numpy ndarray which shares the same underlying storage with the tensor. Examples: >>> from mindspore import Tensor >>> import numpy as np >>> x = Tensor(np.array([1, 2], dtype=np.float32)) >>> y = x.asnumpy() >>> y[0] = 11 >>> print(x) [11. 2.] >>> print(y) [11. 2.] """ if self.has_init: self.init_data() return Tensor_.asnumpy(self)
[docs] def numpy(self): """ Alias for :func:`mindspore.Tensor.asnumpy`. """ return self.asnumpy()
def is_persistent_data(self): """ Check if size of tensor is huge, and need save data to persistent storage. If size of tensor is bigger then MS_EMBEDDING_REMOTE_CACHE_MEMORY_SIZE, it will use persistent storage to save tensor data. And will spilt data to some slice. Returns: True or False """ return Tensor_.is_persistent_data(self) def asnumpy_of_slice_persistent_data(self, param_key, slice_index): """ Convert a slice of tensor data to numpy array. A slice is part of tensor data. Returns as a NumPy ndarray. This slice tensor data and the returned ndarray share the same underlying storage. Changes to self tensor will be reflected in the ndarray. Returns: A numpy ndarray which shares the same underlying storage with the slice of tensor data. """ return Tensor_.asnumpy_of_slice_persistent_data(self, param_key, slice_index) def slice_num_of_persistent_data(self): """ Get slice num of a tensor which use persistent storage. Returns: Num of slice. """ return self.slice_num_of_persistent_data_
[docs] def slice_scatter(self, src, axis=0, start=None, end=None, step=1): """ For details, please refer to :func:`mindspore.ops.slice_scatter`. """ return tensor_operator_registry.get('slice_scatter')(self, src, axis, start, end, step)
[docs] def select_scatter(self, src, axis, index): """ For details, please refer to :func:`mindspore.ops.select_scatter`. """ return tensor_operator_registry.get('select_scatter')(self, src, axis, index)
[docs] def geqrf(self): """ For details, please refer to :func:`mindspore.ops.geqrf`. """ return tensor_operator_registry.get('geqrf')(self)
def slice_shape_of_persistent_data(self): """ Get slice shape of tensor after cut to slice size. Returns: The slice shape of tensor. """ return self.slice_shape_of_persistent_data_ def value(self): """ Get the value of the tensor or the parameter. Returns: The value of the tensor or the parameter. Examples: >>> from mindspore import Tensor >>> import numpy as np >>> x = Tensor(np.array([1, 2], dtype=np.float32)) >>> x_value = x.value() >>> print(x_value) [1. 2.] """ return self
[docs] def contiguous(self): """ Converts a Tensor into a continuous-memory Tensor that contains the same data as the original Tensor. Returns: A contiguous in memory tensor containing the same data as self tensor. Examples: >>> import mindspore as ms >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor([[1, 2, 3], [4, 5, 6]], dtype=ms.float32) >>> y = ops.transpose(x, (1, 0)) >>> z = y.contiguous() >>> print(z.is_contiguous()) True """ if not self._need_contiguous(): return self return tensor_operator_registry.get('contiguous')(self)
[docs] def is_contiguous(self): """ Determines whether the memory of tensor is contiguous. Returns: Bool, True if tensor memory is contiguous, False otherwise. Examples: >>> import mindspore as ms >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor([[1, 2, 3], [4, 5, 6]], dtype=ms.float32) >>> y = ops.transpose(x, (1, 0)) >>> print(y.is_contiguous()) False """ return Tensor_.is_contiguous(self)
[docs] def stride(self, dim=None): """ The stride to jump from one element to the next in the input dim. When no parameters are passed in, a list of stride for all dimensions is returned. Args: dim (int): The dim of stride from one element to the next. Returns: Int, the stride of tensor. Raises: TypeError: `dim` is not an int. Examples: >>> import mindspore as ms >>> x = ms.Tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], dtype=ms.float32) >>> x.stride() [5, 1] """ stride = Tensor_.stride(self) if dim is None: return stride return stride[dim]
[docs] def storage_offset(self): """ Tensor's offset in the underlying storage in terms of the number of storage elements. Returns: int, tensor's offset in the underlying storage in terms of number of storage elements. Examples: >>> import mindspore as ms >>> x = ms.Tensor([1, 2, 3, 4, 5], dtype=ms.float32) >>> ret = x.storage_offset() >>> print(ret) 0 """ return Tensor_.storage_offset(self)
[docs] def register_hook(self, hook): """ Registers a backward hook for tensor. Note: - The `hook` must be defined as the following code. `grad` is the gradient passed to the tensor, which may be modified by returning a new output gradient. - The `hook` should have the following signature: hook(grad) -> New output gradient, but can not return None or not set return value. - The following constraints must be met under graph mode: - The `hook` must satisfy the syntax constraints of the graph mode. - Registering `hook` for `Parameter` is not supported in the graph (i.e., function `Cell.construct` or function decorated by `@jit`). - It is not supported to delete `hook` inside graph. - Register `hook` in the graph will return then `Tensor` it self. Args: hook (function): Python function. Tensor backward hook function. Returns: A handle corresponding to the `hook` . The handle can be used to remove the added `hook` by calling `handle.remove()` . Raises: TypeError: If the `hook` is not a function of python. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor >>> ms.set_context(mode=ms.PYNATIVE_MODE) >>> def hook_fn(grad): ... return grad * 2 ... >>> def hook_test(x, y): ... z = x * y ... z.register_hook(hook_fn) ... z = z * y ... return z ... >>> ms_grad = ms.grad(hook_test, grad_position=(0,1)) >>> output = ms_grad(Tensor(1, ms.float32), Tensor(2, ms.float32)) >>> print(output) (Tensor(shape=[], dtype=Float32, value=8), Tensor(shape=[], dtype=Float32, value=6)) """ if not check_hook_fn("register_hook", hook): return _TensorHookHandle(self) handle = _TensorHookHandle(self) handle.id = Tensor_.register_hook(self, hook) return handle
def _remove_hook(self): pass
[docs] def flush_from_cache(self): """ Flush cache data to host if tensor is cache enable. Examples: >>> from mindspore import Tensor >>> import numpy as np >>> x = Tensor(np.array([1, 2], dtype=np.float32)) >>> y = x.flush_from_cache() >>> print(y) None """ Tensor_._flush_from_cache(self)
[docs] def addcdiv(self, tensor1, tensor2, value=1): r""" For details, please refer to :func:`mindspore.ops.addcdiv`. """ return tensor_operator_registry.get('addcdiv')(self, tensor1, tensor2, value)
[docs] def addcmul(self, tensor1, tensor2, value=1): r""" For details, please refer to :func:`mindspore.ops.addcmul`. """ return tensor_operator_registry.get('addcmul')(self, tensor1, tensor2, value)
[docs] def addmm_(self, mat1, mat2, *, beta=1, alpha=1): r""" For details, please refer to :func:`mindspore.ops.addmm`. .. note:: The output results are directly updated in the Tensor. .. warning:: This is an experimental API that is subject to change or deletion. """ return tensor_operator_registry.get('addmm_')(self, mat1, mat2, beta=beta, alpha=alpha)
[docs] def addr(self, vec1, vec2, beta=1, alpha=1): r""" For details, please refer to :func:`mindspore.ops.addr`. """ return tensor_operator_registry.get('addr')(self, vec1, vec2, beta=beta, alpha=alpha)
[docs] def adjoint(self): r""" For details, please refer to :func:`mindspore.ops.adjoint`. """ return tensor_operator_registry.get('adjoint')(self)
[docs] def angle(self): r""" For details, please refer to :func:`mindspore.ops.angle`. """ return tensor_operator_registry.get('angle')(self)
[docs] def baddbmm(self, batch1, batch2, beta=1, alpha=1): r""" For details, please refer to :func:`mindspore.ops.baddbmm`. """ return tensor_operator_registry.get('baddbmm')(self, batch1, batch2, beta=beta, alpha=alpha)
[docs] def view(self, *shape): """ Reshape the tensor according to the input shape. It's the same as :func:`mindspore.Tensor.reshape`, implemented by the underlying reshape operator. Args: shape (Union[tuple(int), int]): Dimension of the output tensor. Returns: Tensor, which dimension is the input shape's value. Examples: >>> from mindspore import Tensor >>> import numpy as np >>> a = Tensor(np.array([[1, 2, 3], [2, 3, 4]], dtype=np.float32)) >>> output = a.view((3, 2)) >>> print(output) [[1. 2.] [3. 2.] [3. 4.]] """ if not shape: raise ValueError("The shape variable should not be empty") if isinstance(shape[0], tuple): if len(shape) != 1: raise ValueError(f"Only one tuple is needed, but got {shape}") shape = shape[0] return tensor_operator_registry.get('reshape')(self, shape)
[docs] def bitwise_and(self, other): """ For details, please refer to :func:`mindspore.ops.bitwise_and`. """ return tensor_operator_registry.get('bitwise_and')(self, other)
[docs] def bitwise_or(self, other): """ For details, please refer to :func:`mindspore.ops.bitwise_or`. """ return tensor_operator_registry.get('bitwise_or')(self, other)
[docs] def bitwise_xor(self, other): """ For details, please refer to :func:`mindspore.ops.bitwise_xor`. """ return tensor_operator_registry.get('bitwise_xor')(self, other)
[docs] def bitwise_left_shift(self, other): """ For details, please refer to :func:`mindspore.ops.bitwise_left_shift`. """ return tensor_operator_registry.get('bitwise_left_shift')(self, other)
[docs] def bitwise_right_shift(self, other): """ For details, please refer to :func:`mindspore.ops.bitwise_right_shift`. """ _cast = tensor_operator_registry.get('cast') other = _cast(other, self.dtype) return tensor_operator_registry.get('bitwise_right_shift')(self, other)
[docs] def scatter_mul(self, indices, updates): """ For details, please refer to :func:`mindspore.ops.scatter_mul`. """ return tensor_operator_registry.get('tensor_scatter_mul')(self, indices, updates)
[docs] def scatter_div(self, indices, updates): """ For details, please refer to :func:`mindspore.ops.scatter_div`. """ return tensor_operator_registry.get('tensor_scatter_div')(self, indices, updates)
[docs] def ger(self, vec2): """ For details, please refer to :func:`mindspore.ops.ger`. """ return tensor_operator_registry.get('ger')(self, vec2)
[docs] def ge(self, x): """ For details, please refer to :func:`mindspore.ops.ge`. """ return tensor_operator_registry.get('ge')(self, x)
[docs] def broadcast_to(self, shape): """ For details, please refer to :func:`mindspore.ops.broadcast_to`. """ return tensor_operator_registry.get('broadcast_to')(self, shape)
[docs] def real(self): r""" For details, please refer to :func:`mindspore.ops.real`. """ return tensor_operator_registry.get('real')(self)
def tanh_(self): r""" Computes hyperbolic tangent of self inplace element-wise. The Tanh function is defined as: .. math:: tanh(x_i) = \frac{\exp(x_i) - \exp(-x_i)}{\exp(x_i) + \exp(-x_i)} = \frac{\exp(2x_i) - 1}{\exp(2x_i) + 1}, where :math:`x_i` is an element of the input Tensor. Tanh Activation Function Graph: .. image:: ../../images/Tanh.png :align: center .. warning:: - This is an experimental API that is subject ot change or deletion. Returns: Tensor, with the same type and shape as the `self`. Raises: TypeError: If `self` is not a Tensor. Supported Platforms: ``Ascend`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) >>> output = x.tanh_() >>> print(output) [0.7615941 0.9640276 0.9950547 0.9993293 0.9999092] """ return tensor_operator_registry.get('tanh_')(self)
[docs] def cov(self, *, correction=1, fweights=None, aweights=None): r""" For details, please refer to :func:`mindspore.ops.cov`. """ return tensor_operator_registry.get('cov')(self, correction=correction, fweights=fweights, aweights=aweights)
[docs] def floor_(self): r""" Rounds a tensor down to the closest integer element-wise. .. math:: out_i = \lfloor input_i \rfloor .. warning:: This is an experimental API that is subject to change or deletion. Returns: Return a tensor with the same shape of input. Supported Platforms: ``Ascend`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor(np.array([1.1, 2.5, -1.5], mindspore.float32) >>> x.floor_() >>> print(x) [1. 2. -2.] """ return tensor_operator_registry.get('floor_')(self)
[docs] def floor_divide(self, other): """ For details, please refer to :func:`mindspore.ops.floor_divide`. .. warning:: This is an experimental API that is subject to change or deletion. """ return tensor_operator_registry.get('floor_divide')(self, other)
# pylint: disable=redefined-builtin
[docs] def norm(self, ord=None, dim=None, keepdim=False, *, dtype=None): """ For details, please refer to :func:`mindspore.ops.norm`. """ return tensor_operator_registry.get('norm')(self, ord, dim, keepdim, dtype=dtype)
[docs] def renorm(self, p, axis, maxnorm): """ For details, please refer to :func:`mindspore.ops.renorm`. """ return tensor_operator_registry.get("renorm")(self, p, axis, maxnorm)
[docs] def approximate_equal(self, other, tolerance=1e-5): r""" For details, please refer to :func:`mindspore.ops.approximate_equal`, The parameter `other` of current interface is the same as the parameter `y` of the reference interface. """ validator.check_isinstance("x", self, Tensor) validator.check_isinstance("y", other, Tensor) validator.check_isinstance("tolerance", tolerance, float) input_x = self.copy() if self.dtype == mstype.float32 else self.astype(mstype.float16) input_y = other.copy() if other.dtype == mstype.float32 else other.astype(mstype.float16) return tensor_operator_registry.get('__lt__')(tensor_operator_registry.get('abs')( tensor_operator_registry.get('__sub__')(input_x, input_y) ), tolerance)
[docs] def logit(self, eps=None): r""" For details, please refer to :func:`mindspore.ops.logit`. """ if eps is None: eps = -1.0 validator.check_value_type('eps', eps, (float,), 'Tensor.logit') return tensor_operator_registry.get('logit')(self, eps)
[docs] def logaddexp(self, other): r""" For details, please refer to :func:`mindspore.ops.logaddexp`. """ return tensor_operator_registry.get('logaddexp')(self, other)
[docs] def logaddexp2(self, other): r""" For details, please refer to :func:`mindspore.ops.logaddexp2`. """ return tensor_operator_registry.get('logaddexp2')(self, other)
[docs] def logcumsumexp(self, axis): r""" For details, please refer to :func:`mindspore.ops.logcumsumexp`. .. warning:: This is an experimental API that is subject to change or deletion. """ return tensor_operator_registry.get('logcumsumexp')(self, axis)
[docs] def logsumexp(self, axis, keepdims=False): r""" For details, please refer to :func:`mindspore.ops.logsumexp`. Note: The input parameter `keepdims` of the inputs has the same meaning as the input parameter `keep_dims` in :func:`mindspore.ops.logsumexp`. """ return tensor_operator_registry.get('logsumexp')(self, axis, keepdims)
[docs] def logdet(self): r""" For details, please refer to :func:`mindspore.ops.logdet`. """ return tensor_operator_registry.get('logdet')(self)
[docs] def i0(self): r""" For details, please refer to :func:`mindspore.ops.bessel_i0`. """ return tensor_operator_registry.get('i0')(self)
[docs] def isposinf(self): r""" For details, please refer to :func:`mindspore.ops.isposinf`. """ return tensor_operator_registry.get('isposinf')(self)
[docs] def isreal(self): r""" For details, please refer to :func:`mindspore.ops.isreal`. """ return tensor_operator_registry.get('isreal')(self)
[docs] def is_complex(self): r""" For details, please refer to :func:`mindspore.ops.is_complex`. """ return tensor_operator_registry.get('is_complex')(self)
[docs] def inv(self): r""" For details, please refer to :func:`mindspore.ops.inv`. """ return tensor_operator_registry.get('inv')(self)
[docs] def invert(self): r""" For details, please refer to :func:`mindspore.ops.invert`. """ return tensor_operator_registry.get('invert')(self)
[docs] def amin(self, axis=None, keepdims=False, *, initial=None, where=None): """ For details, please refer to :func:`mindspore.ops.amin`. """ if axis is None: axis = () return tensor_operator_registry.get('amin')(self, axis, keepdims, initial=initial, where=where)
[docs] def reverse(self, axis): """ For details, please refer to :func:`mindspore.ops.flip`. The `axis` parameter in `Tensor.reverse` is equivalent to the `dims` parameter in :func:`mindspore.ops.flip`. """ return tensor_operator_registry.get('flip')(self, axis)
[docs] def amax(self, axis=None, keepdims=False, *, initial=None, where=None): """ For details, please refer to :func:`mindspore.ops.amax`. """ if axis is None: axis = () return tensor_operator_registry.get('amax')(self, axis, keepdims, initial=initial, where=where)
[docs] def aminmax(self, *, axis=0, keepdims=False): r""" For details, please refer to :func:`mindspore.ops.aminmax`. """ return tensor_operator_registry.get('aminmax')(self, axis=axis, keepdims=keepdims)
[docs] def reverse_sequence(self, seq_lengths, seq_dim=0, batch_dim=0): """ For details, please refer to :func:`mindspore.ops.reverse_sequence`. """ return tensor_operator_registry.get("reverse_sequence")(self, seq_lengths, seq_dim, batch_dim)
[docs] def col2im(self, output_size, kernel_size, dilation, padding_value, stride): """ For details, please refer to :func:`mindspore.ops.col2im`. """ return tensor_operator_registry.get('col2im')(self, output_size, kernel_size, dilation, padding_value, stride)
[docs] def reshape_as(self, other): """ Change the shape of the Tensor to the shape of `other` without changing the data. Args: other(Tensor): The result tensor has the same shape as `other`. Returns: Tensor, has the same shape as `other`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor >>> import numpy as np >>> x = Tensor([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]], dtype=ms.float32) >>> y = Tensor(np.arange(6).reshape(3,2)) >>> output = x.reshape_as(y) >>> print(output) [[-0.1 0.3] [ 3.6 0.4] [ 0.5 -3.2]] """ return tensor_operator_registry.get('reshape')(self, other.shape)
[docs] def ravel(self): """ Return a contiguous flattened tensor. Returns: Tensor, a 1-D tensor, containing the same elements of the input. See also: - :func:`mindspore.Tensor.reshape`: Give a new shape to a tensor without changing its data. - :func:`mindspore.Tensor.flatten`: Return a copy of the tensor collapsed into one dimension. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.ones((2,3,4), dtype=np.float32)) >>> output = x.ravel() >>> print(output.shape) (24,) """ reshape_op = tensor_operator_registry.get('reshape') return reshape_op(self, (-1,))
[docs] def roll(self, shifts, dims): """ For details, please refer to :func:`mindspore.ops.roll`. """ return tensor_operator_registry.get('roll')(shifts, dims)(self)
[docs] def rot90(self, k, dims): r""" For details, please refer to :func:`mindspore.ops.rot90`. """ return tensor_operator_registry.get('rot90')(self, k, dims)
[docs] def deg2rad(self): r""" For details, please refer to :func:`mindspore.ops.deg2rad`. """ return tensor_operator_registry.get('deg2rad')(self)
[docs] def rad2deg(self): r""" For details, please refer to :func:`mindspore.ops.rad2deg`. """ return tensor_operator_registry.get('rad2deg')(self)
[docs] def copysign(self, other): r""" For details, please refer to :func:`mindspore.ops.copysign`. """ return tensor_operator_registry.get('copysign')(self, other)
[docs] def nelement(self): r""" Alias for :func:`mindspore.Tensor.numel`. """ return self.size
[docs] def numel(self): r""" Returns a Scalar of type int that represents the total number of elements in the Tensor. Returns: int. A scalar representing the total of elements in the Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> input_x = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) >>> print(input_x.numel()) 4 """ return self.size
[docs] def permute(self, *axis): """ Tensor.permute supports unpacking the `axis` argument automatically when it is passed as an indefinite number of positional arguments, which has a slight difference from the input parameter of :func:`mindspore.ops.permute`. For details, please refer to :func:`mindspore.ops.permute`. """ perm = validator.check_transpose_axis(axis, self.ndim) return tensor_operator_registry.get('permute')(self, perm)
[docs] def positive(self): """ For details, please refer to :func:`mindspore.ops.positive`. """ return tensor_operator_registry.get("positive")(self)
[docs] def float_power(self, other): r""" For details, please refer to :func:`mindspore.ops.float_power`. """ return tensor_operator_registry.get('float_power')(self, other)
[docs] def fmax(self, other): r""" For details, please refer to :func:`mindspore.ops.fmax`. """ return tensor_operator_registry.get('fmax')(self, other)
def fmin(self, other): r""" This interface is deprecated from version 2.4 and will be removed in a future version. """ return tensor_operator_registry.get('fmin')(self, other)
[docs] def swapaxes(self, axis0, axis1): """ For details, please refer to :func:`mindspore.ops.swapaxes`. """ return tensor_operator_registry.get('swapaxes')(self, axis0, axis1)
[docs] def swapdims(self, dim0, dim1): """ For details, please refer to :func:`mindspore.ops.swapdims`. """ return tensor_operator_registry.get('swapdims')(self, dim0, dim1)
[docs] def squeeze(self, axis=None): """ For details, please refer to :func:`mindspore.ops.squeeze`. """ return tensor_operator_registry.get('squeeze')(self, axis)
[docs] def slogdet(self): """ For details, please refer to :func:`mindspore.ops.slogdet`. """ return tensor_operator_registry.get('slogdet')(self)
[docs] def expand_dims(self, axis): """ For details, please refer to :func:`mindspore.ops.expand_dims`. """ validator.check_is_int(axis, 'axis') validator.check_int_range(axis, -self.ndim - 1, self.ndim + 1, validator.INC_LEFT, 'axis') return tensor_operator_registry.get('expand_dims')(self, axis)
[docs] def astype(self, dtype, copy=True): """ Return a copy of the tensor, cast to a specified type. Args: dtype (Union[:class:`mindspore.dtype`, numpy.dtype, str]): Designated tensor dtype, can be in format of `mindspore.dtype.float32` or `numpy.float32` or `float32`. copy (bool, optional): By default, astype always returns a newly allocated tensor. If this is set to ``false`` , the input tensor is returned instead of a copy. Default: ``True`` . Returns: Tensor, with the designated dtype. Raises: TypeError: If the specified dtype cannot be understood. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.ones((1,2,2,1), dtype=np.float32)) >>> x = x.astype("int32") >>> print(x.dtype) Int32 """ dtype = _check_astype_and_convert(dtype) if not copy and dtype == self.dtype: return self return self.to(dtype)
[docs] def argmax_with_value(self, axis=0, keep_dims=False): """ Compute the max value of input Tensor on the specified axis, and return the max value and index. Note: - In auto_parallel and semi_auto_parallel mode, the first output index can not be used. - If there are multiple maximum values, the index of the first maximum value is used. - The value range of `axis` is [-dims, dims - 1]. `dims` is the dimension length of this tensor. Args: axis (int, optional): The dimension to reduce. Default: ``0`` . keep_dims (bool, optional): Whether to reduce dimension, if ``true`` the output will keep the same dimension as the input, the output will reduce dimension if ``false`` . Default: ``False`` . Returns: tuple (Tensor), tuple of 2 tensors, containing the corresponding index and the maximum value of the input tensor. - **index** (Tensor) - The index for the maximum value of the input tensor. If `keep_dims` is ``true`` , the shape of output tensors is :math:`(x_1, x_2, ..., x_{axis-1}, 1, x_{axis+1}, ..., x_N)`. Otherwise, the shape is :math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)` . - **value** (Tensor) - The maximum value of input tensor, with the same shape as index. Raises: TypeError: If `keep_dims` is not a bool. TypeError: If `axis` is not an int. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32) >>> output, index = x.argmax_with_value() >>> print(output, index) 0.7 3 >>> output, index = x.argmax_with_value(keep_dims=True) >>> print(output, index) [0.7] [3] """ if self.shape == (): return (self, Tensor(0)) return tensor_operator_registry.get('argmax_with_value')(self, axis, keep_dims)
[docs] def argmin_with_value(self, axis=0, keep_dims=False): """ Compute the max value of input Tensor on the specified axis, return the minimum value and index. Note: - In auto_parallel and semi_auto_parallel mode, the first output index can not be used. - If there are multiple minimum values, the index of the first minimum value is used. - The value range of `axis` is [-dims, dims - 1]. `dims` is the dimension length of this tensor. Args: axis (int, optional): The dimension to reduce. Default: ``0``. keep_dims (bool, optional): Whether to reduce dimension, if true the output will keep the same dimension as the input, the output will reduce dimension if false. Default: ``False``. Returns: tuple (Tensor), tuple of 2 tensors, containing the corresponding index and the minimum value of the input tensor. - **index** (Tensor) - The index for the minimum value of the input tensor. If `keep_dims` is true, the shape of output tensors is :math:`(x_1, x_2, ..., x_{axis-1}, 1, x_{axis+1}, ..., x_N)`. Otherwise, the shape is :math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)` . - **value** (Tensor) - The minimum value of input tensor, with the same shape as index. Raises: TypeError: If `keep_dims` is not a bool. TypeError: If `axis` is not an int. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32) >>> output, index = x.argmin_with_value() >>> print(output, index) 0.0 0 >>> output, index = x.argmin_with_value(keep_dims=True) >>> print(output, index) [0.0] [0] """ if self.shape == (): return (self, Tensor(0)) return tensor_operator_registry.get('argmin_with_value')(self, axis, keep_dims)
[docs] def cummin(self, axis): r""" For details, please refer to :func:`mindspore.ops.cummin`. """ return tensor_operator_registry.get('cummin')(self, axis)
[docs] def cummax(self, axis): r""" For details, please refer to :func:`mindspore.ops.cummax`. """ return tensor_operator_registry.get('cummax')(self, axis)
[docs] def index_fill(self, axis, index, value): """ For details, please refer to :func:`mindspore.ops.index_fill`. """ return tensor_operator_registry.get('index_fill')(self, axis, index, value)
[docs] def inplace_update(self, v, indices): """ For details, please refer to :func:`mindspore.ops.inplace_update`. """ return tensor_operator_registry.get('inplace_update')(self, v, indices)
[docs] def copy(self): """ Return a copy of the tensor. Note: The current implementation does not support `order` argument. Returns: Copied tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor >>> a = Tensor(np.ones((3,3)).astype("float32")) >>> output = a.copy() >>> print(output) [[1. 1. 1.] [1. 1. 1.] [1. 1. 1.]] """ if self.size == 0: return self origin_dtype = self.dtype x = self logical_not_op = tensor_operator_registry.get('logical_not') if origin_dtype == mstype.bool_: return logical_not_op(logical_not_op(x)) if origin_dtype != mstype.float64: x = x.astype("float32") x = x / 1.0 x = x.astype(origin_dtype) return x
[docs] def copy_(self, src, non_blocking=False): """ Copies the elements from src into self tensor and returns self. .. warning:: This is an experimental API that is subject to change or deletion. The `src` tensor must be broadcastable with the `self` tensor. It may be of a different data type. Args: src (Tensor): the source tensor to copy from. non_blocking (bool): no effect currently. Returns: Return self Tensor. Supported Platforms: ``Ascend`` Examples: >>> import numpy as np >>> from mindspore import Tensor >>> a = Tensor(np.ones((3,3)).astype("float32")) >>> b = Tensor(np.zeros((3,3)).astype("float32")) >>> a.copy_(b) >>> print(a) [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] """ return tensor_operator_registry.get("copy_")(self, src)
[docs] def scatter_add_(self, dim, index, src): """ Add all elements in `src` to the index specified by `index` to `self` along dimension specified by `dim`, `scatter_add` is an in-place operation. The ranks of `self`, `index` and `src` must be greater or equal to 1. For a 3-D tensor, the operation updates `self` as follows: .. code-block:: self[index[i][j][k]][j][k] += src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] += src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] += src[i][j][k] # if dim == 2 Args: dim (int): Which dim to scatter. Accepted range is [-r, r) where r = rank(`self`). index (Tensor): The index of `self` to do scatter operation whose data type must be int32 or int64. Same rank as `self`. Except for the dimension specified by `dim`, size of each dimension of `index` must be less than or equal to the size of the corresponding dimension of `self`. src (Tensor): The tensor doing the scatter operation with `self`, has the same type as `self` and the size of each dimension must be greater than or equal to that of `index`. Returns: Tensor, has the same shape and type as `self`. Raises: TypeError: If `index` is neither int32 nor int64. ValueError: If anyone of the rank among `self`, `index` and `src` is less than 1. ValueError: If the ranks of `self`, `index` and `src` are not the same. ValueError: The size of any dimension of `index` except the dimension specified by `dim` is greater than the size of the corresponding dimension of `self`. ValueError: If the size of any dimension of `src` is less than that of `index`. Supported Platforms: ``Ascend`` Examples: >>> import numpy as np >>> import mindspore as ms >>> from mindspore import Tensor >>> input = Tensor(np.array([[1, 2, 3, 4, 5]]), dtype=ms.float32) >>> src = Tensor(np.array([[8, 8]]), dtype=ms.float32) >>> index = Tensor(np.array([[2, 4]]), dtype=ms.int64) >>> out = input.scatter_add_(1, index, src) >>> print(out) [[1. 2. 11. 4. 13.]] >>> input = Tensor(np.zeros((5, 5)), dtype=ms.float32) >>> src = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), dtype=ms.float32) >>> index = Tensor(np.array([[0, 0, 0], [2, 2, 2], [4, 4, 4]]), dtype=ms.int64) >>> out = input.scatter_add_(0, index, src) >>> print(out) [[1. 2. 3. 0. 0.] [0. 0. 0. 0. 0.] [4. 5. 6. 0. 0.] [0. 0. 0. 0. 0.] [7. 8. 9. 0. 0.]] >>> input = Tensor(np.zeros((5, 5)), dtype=ms.float32) >>> src = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), dtype=ms.float32) >>> index = Tensor(np.array([[0, 2, 4], [0, 2, 4], [0, 2, 4]]), dtype=ms.int64) >>> out = input.scatter_add_(1, index, src) >>> print(out) [[1. 0. 2. 0. 3.] [4. 0. 5. 0. 6.] [7. 0. 8. 0. 9.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]] """ return tensor_operator_registry.get("inplace_scatter_add")(self, dim, index, src)
[docs] def scatter_sub(self, indices, updates): """ Creates a new tensor by subtracting the values from the positions in self tensor indicated by `indices`, with values from `updates`. When multiple values are provided for the same index, the result of the update will be to subtract these values respectively. This operation is almost equivalent to using :class:`mindspore.ops.ScatterNdSub` , except that the updates are applied on output `Tensor` instead of input `Parameter`. The last axis of `indices` is the depth of each index vectors. For each index vector, there must be a corresponding value in `updates`. The shape of `updates` should be equal to the shape of `self[indices]`. For more details, see Examples. Note: On GPU, if some values of the `indices` are out of bound, instead of raising an index error, the corresponding `updates` will not be updated to self tensor. On CPU, if some values of the `indices` are out of bound, raising an index error. On Ascend, out of bound checking is not supported, if some values of the `indices` are out of bound, unknown errors may be caused. Args: indices (Tensor): The index of input tensor whose data type is int32 or int64. The rank must be at least 2. updates (Tensor): The tensor to update the input tensor, has the same type as input, and updates.shape should be equal to indices.shape[:-1] + self.shape[indices.shape[-1]:]. Returns: Tensor, has the same shape and type as self tensor. Raises: TypeError: If dtype of `indices` is neither int32 nor int64. ValueError: If length of shape of self tensor is less than the last dimension of shape of `indices`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype('float32')) >>> indices = Tensor(np.array([[0, 0], [0, 0]]).astype('int32')) >>> updates = Tensor(np.array([1.0, 2.2]).astype('float32')) >>> output = x.scatter_sub(indices, updates) >>> print(output) [[-3.3000002 0.3 3.6 ] [ 0.4 0.5 -3.2 ]] """ return tensor_operator_registry.get('tensor_scatter_sub')(self, indices, updates)
[docs] def scatter_min(self, indices, updates): """ For details, please refer to :func:`mindspore.ops.scatter_min`. """ return tensor_operator_registry.get('tensor_scatter_min')(self, indices, updates)
[docs] def scatter_max(self, indices, updates): """ For details, please refer to :func:`mindspore.ops.scatter_max`. """ return tensor_operator_registry.get('tensor_scatter_max')(self, indices, updates)
[docs] def softmax(self, axis, dtype=None): """ For details, please refer to :func:`mindspore.ops.softmax`. """ return tensor_operator_registry.get('softmax')(self, axis, dtype=dtype)
def fill(self, value): """ `Tensor.fill` is deprecated, please use `ops.fill` instead. """ if value is None: if self.dtype not in (mstype.float16, mstype.float32, mstype.float64): raise TypeError("For 'Tensor.fill', if the argument 'value' is None, the type of the original " "tensor must be float, but got {}.".format(self.dtype)) value = Tensor(float('nan')).astype("float32") return tensor_operator_registry.get("tile")()(value, self.shape).astype(self.dtype) return tensor_operator_registry.get("fill")(self.dtype, self.shape, value) def fills(self, value): """ `Tensor.fills` is deprecated, please use `ops.fill` instead. """ return tensor_operator_registry.get('fills')(self, value)
[docs] def fill_diagonal(self, fill_value, wrap=False): """ Fills the main diagonal of a Tensor with a specified value and returns the result. The input has at least 2 dimensions, and all dimensions of input must be equal in length when the dimension of input is greater than 2. .. warning:: This is an experimental API that is subject to change or deletion. Args: fill_value (float): The value to fill with the diagonal of `self`. wrap (bool, optional): Controls whether the diagonal elements continue onto the remaining rows in case of a tall matrix(a matrix has more rows than columns). Default: ``False``. Returns: - **y** (Tensor) - Tensor, has the same shape and data type as `self`. Raises: TypeError: If data type of `self` is not one of the following: float32, int32, int64. ValueError: If the dimension of `self` is not greater than 1. ValueError: If the size of each dimension is not equal, when the dimension is greater than 2. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor(np.ones((6, 3)), mindspore.float32) >>> output = x.fill_diagonal(5.0, wrap=True) >>> print(output) [[5. 1. 1.] [1. 5. 1.] [1. 1. 5.] [1. 1. 1.] [5. 1. 1.] [1. 5. 1.]] """ return tensor_operator_registry.get('fill_diagonal')(fill_value, wrap)(self)
[docs] def ptp(self, axis=None, keepdims=False): """ The name of the function comes from the acronym for "peak to peak". Calculate the difference between the maximum value and the minimum value along the axis. Note: Numpy argument `out` is not supported. Args: axis (Union[None, int, tuple(int)]): Axis or axes along which the range is computed. The default is to compute the variance of the flattened tensor. Default: ``None`` . keepdims (bool): If this is set to ``True`` , the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the tensor. Default is ``False`` . Returns: Tensor. Raises: TypeError: If `self` is not a tensor, or `axis` and `keepdims` have types not specified above. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import Tensor >>> x = Tensor([[4.0, 9.0, 2.0, 10.0], [6.0, 9.0, 7.0, 12.0]]).astype("float32") >>> print(x.ptp(axis=1)) [8. 6.] >>> print(x.ptp(axis=0)) [2. 0. 5. 2.] """ if not isinstance(keepdims, bool): raise TypeError("For 'Tensor.ptp', the type of the argument 'keepdims' must be bool, " "but got {}.".format(type(keepdims))) if axis is None: axis = () else: validator.check_axis_type(axis, True, True, False) axis = validator.check_axis_valid(axis, self.ndim) return self.max(axis, keepdims) - self.min(axis, keepdims)
[docs] def clamp_(self, min=None, max=None): r""" Clamps tensor values between the specified minimum value and maximum value. Limits the value of :math:`self` to a range, whose lower limit is `min` and upper limit is `max` . .. warning:: This is an experimental API that is subject to change or deletion. .. math:: out_i= \left\{ \begin{array}{align} max & \text{ if } self_i\ge max \\ self_i & \text{ if } min \lt self_i \lt max \\ min & \text{ if } self_i \le min \\ \end{array}\right. Note: - `min` and `max` cannot be None at the same time; - When `min` is None and `max` is not None, the elements in Tensor larger than `max` will become `max`; - When `min` is not None and `max` is None, the elements in Tensor smaller than `min` will become `min`; - If `min` is greater than `max`, the value of all elements in Tensor will be set to `max`; - The data type of `self`, `min` and `max` should support implicit type conversion and cannot be bool type. Args: min (Union(Tensor, float, int), optional): The minimum value. Default: ``None`` . max (Union(Tensor, float, int), optional): The maximum value. Default: ``None`` . Returns: Tensor, a clipped Tensor. The data type and shape are the same as self. Raises: ValueError: If both `min` and `max` are None. TypeError: If the type of `self` is not in Tensor. TypeError: If the type of `min` is not in None, Tensor, float or int. TypeError: If the type of `max` is not in None, Tensor, float or int. Supported Platforms: ``Ascend`` Examples: >>> import mindspore >>> from mindspore import Tensor >>> import numpy as np >>> min_value = Tensor(5, mindspore.float32) >>> max_value = Tensor(20, mindspore.float32) >>> input = Tensor(np.array([[1., 25., 5., 7.], [4., 11., 6., 21.]]), mindspore.float32) >>> input.clamp_(min_value, max_value) >>> print(input) [[ 5. 20. 5. 7.] [ 5. 11. 6. 20.]] """ return tensor_operator_registry.get('clamp_')(self, min, max)
[docs] def init_data(self, slice_index=None, shape=None, opt_shard_group=None): """ Get the tensor format data of this Tensor. Note: The init_data function can be called once for the same tensor. Args: slice_index (int): Slice index of a parameter's slices. It is used when initialize a slice of a parameter, it guarantees that devices using the same slice can generate the same tensor. Default: ``None``. shape (list[int]): Shape of the slice, it is used when initialize a slice of the parameter. Default: ``None``. opt_shard_group(str): Optimizer shard group which is used in auto or semi auto parallel mode to get one shard of a parameter's slice. For more information about optimizer parallel, please refer to: `Optimizer Parallel <https://www.mindspore.cn/docs/en/master/model_train/parallel/optimizer_parallel.html>`_. Default: ``None``. Returns: Initialized Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore.common.initializer import initializer, Constant >>> x = initializer(Constant(1), [2, 2], ms.float32) >>> out = x.init_data() >>> print(out) [[1. 1.] [1. 1.]] """ if self.init is None: raise TypeError("init_data must be set Tensor.init, init can't be None") if shape is None: shape = self.shape # At embedding cache scenes, we need limit the size of memory for tensor. # And save out of range data to persistent storage to support TB-Level size of tensor. data_shape = list(shape) slice_num_of_persistent_data = get_slice_num(self.dtype, shape) if slice_num_of_persistent_data > 1: slice_first_dim = math.ceil(shape[0] / slice_num_of_persistent_data) data_shape[0] = slice_first_dim self.slice_shape_of_persistent_data_ = data_shape self.slice_num_of_persistent_data_ = slice_num_of_persistent_data from mindspore.common.initializer import Zero as ZeroInitializer try: if isinstance(self.init, ZeroInitializer): data = np.zeros(data_shape, dtype=mstype.dtype_to_nptype(self.dtype)) else: data = np.ndarray(data_shape, dtype=mstype.dtype_to_nptype(self.dtype)) except ValueError as e: msg = "Error shape={}".format(shape) logger.critical(msg) raise ValueError(msg) from e class seed_context: """Set and restore seed.""" def __init__(self, init): self.init = init global_seed = get_seed() self._np_seed = np.random.get_state()[1][0] self.need_set_seed = (slice_index is not None) self._global_seed = global_seed self._seed_offset = 1 if self.need_set_seed: self._seed_offset = get_group_size() * 2 def __enter__(self): if self.need_set_seed: self.seed = self.init.seed if self._global_seed is not None: np.random.seed(slice_index + self._global_seed) self.init.seed = slice_index + self._global_seed else: np.random.seed(slice_index + Tensor.delta_seed) self.init.seed = slice_index + Tensor.delta_seed Tensor.delta_seed += self._seed_offset def __exit__(self, ptype, value, trace): if self.need_set_seed: np.random.seed(self._np_seed) self.init.seed, _ = self.seed with seed_context(self.init): if not isinstance(self.init, ZeroInitializer) and slice_num_of_persistent_data == 1: self.init(data) self.init = None # At embedding cache scenes. When size of tensor is out of range, we store data to persistent storage if slice_num_of_persistent_data > 1: self.assign_value(Tensor_.persistent_data_from_numpy(data, slice_num_of_persistent_data)) else: self.assign_value(Tensor_.from_numpy(data)) return self
[docs] def resize(self, *new_shape): """ Changes shape and size of tensor in-place. If the shape of the new tensor is larger than the shape of the original tensor, the new tensor will be filled with 0. And if the shape of the new tensor is smaller than the shape of the original tensor, the new tensor is filled with the elements of the original tensor in order. Note: Instead of changing the size of the input tensor and returns nothing as in numpy, this method returns a new Tensor with the input size. Numpy argument `refcheck` is not supported. Args: new_shape (Union[ints, tuple of ints]): Shape of resized tensor. Returns: Tensor. See also: - :func:`mindspore.Tensor.reshape`: Give a new shape to a tensor without changing its data. - :func:`mindspore.Tensor.repeat`: Repeat elements of a tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32)) >>> y = x.resize(3, 3) >>> print(y) [[1. 2. 3.] [4. 5. 6.] [0. 0. 0.]] >>> y = x.resize(2, 2) >>> print(y) [[1. 2.] [3. 4.]] """ if not new_shape: return self if len(new_shape) == 1: if isinstance(new_shape[0], tuple): new_shape = new_shape[0] flattened = self.ravel() cur_size = flattened.size new_size = tensor_operator_registry.get('shape_mul')(new_shape) diff_size = new_size - cur_size if diff_size > 0: pad_val = tensor_operator_registry.get('fill')(self.dtype, (diff_size,), 0) res = tensor_operator_registry.get('concatenate')((flattened, pad_val), 0) else: res = flattened[:new_size] return res.reshape(new_shape)
def det(self): r""" This interface is deprecated from version 2.4 and will be removed in a future version. """ return tensor_operator_registry.get('det')(self)
[docs] def diff(self, n=1, axis=-1, prepend=None, append=None): r""" For details, please refer to :func:`mindspore.ops.diff`. """ return tensor_operator_registry.get('diff')(self, n, axis, prepend, append)
[docs] def argwhere(self): r""" For details, please refer to :func:`mindspore.ops.argwhere`. """ return tensor_operator_registry.get('argwhere')(self)
[docs] def moveaxis(self, source, destination): r""" For details, please refer to :func:`mindspore.ops.moveaxis`. """ return tensor_operator_registry.get('moveaxis')(self, source, destination)
[docs] def movedim(self, source, destination): r""" For details, please refer to :func:`mindspore.ops.movedim`. """ return tensor_operator_registry.get('movedim')(self, source, destination)
[docs] def digamma(self): r""" For details, please refer to :func:`mindspore.ops.digamma`. """ return tensor_operator_registry.get('digamma')(self)
def lgamma(self): r""" This interface is deprecated from version 2.4 and will be removed in a future version. """ return tensor_operator_registry.get('lgamma')(self)
[docs] def diagonal(self, offset=0, axis1=0, axis2=1): """ For details, please refer to :func:`mindspore.ops.diagonal`. The parameter `axis1` of the current interface is the same as the parameter `dim1` of the reference interface, the parameter `axis2` of the current interface is the same as the parameter `dim2` of the reference interface. """ return tensor_operator_registry.get('diagonal')(self, offset, axis1, axis2)
[docs] def diagonal_scatter(self, src, offset=0, dim1=0, dim2=1): r""" For details, please refer to :func:`mindspore.ops.diagonal_scatter`. """ return tensor_operator_registry.get('diagonal_scatter')(self, src, offset, dim1, dim2)
[docs] def trace(self, offset=0, axis1=0, axis2=1, dtype=None): """ Return the sum along diagonals of the tensor. Args: offset (int, optional): Offset of the diagonal from the main diagonal. Can be positive or negative. Defaults to main diagonal. axis1 (int, optional): Axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to first axis (0). axis2 (int, optional): Axis to be used as the second axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to second axis. dtype (:class:`mindspore.dtype`, optional): defaults to None. Overrides the dtype of the output Tensor. Returns: Tensor, the sum along diagonals. Raises: ValueError: If the input tensor has less than two dimensions. See also: - :func:`mindspore.Tensor.diagonal`: Return specified diagonals. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.eye(3, dtype=np.float32)) >>> print(x.trace()) 3.0 """ return tensor_operator_registry.get('tracev2')(self, offset, axis1, axis2, dtype)
[docs] def take(self, indices, axis=None, mode='clip'): """ Takes elements from a tensor along an axis. Args: indices (Tensor): The indices with shape :math:`(Nj...)` of the values to extract. axis (int, optional): The axis over which to select values. By default, the flattened input tensor is used. Default: ``None`` . mode (str, optional): Support ``'raise'``, ``'wrap'``, ``'clip'``. - ``raise``: Raises an error; - ``wrap``: Wraps around; - ``clip``: Clips to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element along that axis. Note that this disables indexing with negative numbers. Default: ``'clip'`` . Returns: Tensor, the indexed result. Raises: ValueError: If `axis` is out of range, or `mode` has values other than ('raise', 'wrap', 'clip') Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor >>> a = Tensor(np.array([4, 3, 5, 7, 6, 8])) >>> indices = Tensor(np.array([0, 1, 4])) >>> output = a.take(indices) >>> print(output) [4 3 6] """ if mode not in ('raise', 'wrap', 'clip'): raise ValueError(f"For 'Tensor.take', the argument 'mode' should be one of in ['raise', 'wrap', 'clip']," f" but got {mode}.") if axis is None: a = self.ravel() axis = 0 else: a = self ndim = a.ndim validator.check_axis_in_range(axis, ndim) axis = axis + ndim if axis < 0 else axis shape_a = a.shape shape_indices = indices.shape size_indices = indices.size indices = tensor_operator_registry.get('check_indices')(shape_a[axis], indices, mode) # reshapes indices to shape (Ni..., Nj..., Nk) shape_ni = shape_a[:axis] shape_nk = shape_a[axis + 1:] shape_out = shape_ni + shape_indices + shape_nk shape_indices = tuple(size_indices if i == axis else 1 for i in range(ndim)) indices = indices.reshape(shape_indices) shape_indices = shape_ni + (indices.size,) + shape_nk indices = tensor_operator_registry.get('broadcast_to')(indices, shape_indices) res = tensor_operator_registry.get('gather_d')(a, axis, indices) return res.reshape(shape_out)
[docs] def choose(self, choices, mode='clip'): """ Construct a tensor from an index tensor and a list of tensors to choose from. Args: choices (Union[tuple, list, Tensor]): Choice tensors. The input tensor and all of the `choices` must be broadcasted to the same shape. If `choices` is itself a tensor, then its outermost dimension (i.e., the one corresponding to ``choices.shape[0]``) is taken as defining the "sequence". mode (str, optional): Specifies how indices outside ``[0, n-1]`` will be treated. Support ``'raise'``, ``'wrap'``, ``'clip'``. - ``raise``: Raises an error; - ``wrap``: Wraps around; - ``clip``: Clips to the range. The values greater than n-1 will be mapped to n-1. Note that this mode disables indexing with negative numbers. Default: ``'clip'``. Returns: Tensor, the merged result. Raises: ValueError: If the input tensor and any of the `choices` cannot be broadcast. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]] >>> x = Tensor(np.array([2, 3, 1, 0])) >>> print(x.choose(choices)) [20 31 12 3] """ if isinstance(choices, Tensor): shape_choice = validator.infer_out_shape(self.shape, choices.shape[1:]) choices = tensor_operator_registry.get('broadcast_to')(choices, (choices.shape[0],) + shape_choice) else: # broadcasts choices to the same shape if choices is a sequence choicelist = [] shapes = () for choice in choices: if not isinstance(choice, Tensor): choice = tensor_operator_registry.get('make_tensor')(choice) shapes += (choice.shape,) choicelist.append(choice) shape_choice = validator.infer_out_shape(self.shape, *shapes) tmp = [] for choice in choicelist: tmp.append(tensor_operator_registry.get('broadcast_to')(choice, shape_choice)) choices = tensor_operator_registry.get('stack')(tmp, 0) if self.ndim == 0 or choices.ndim == 0: raise ValueError(f"For 'Tensor.choose', the original tensor and the argument 'choices' cannot be scalars." f" Their dimensions should all be > 0, but got the original tensor's dimension " f"{self.ndim}, 'choices' dimension {choices.ndim}.") a = tensor_operator_registry.get('broadcast_to')(self, shape_choice) dtype = choices.dtype # adjusts dtype for F.tensor_mul and F.gather_nd a = a.astype(mstype.int32) choices = choices.astype(mstype.int32) a = tensor_operator_registry.get('check_indices')(choices.shape[0], a, mode, allow_negative_index=False) grids = [] ndim = len(a.shape) for i in range(ndim): dim_grid = Tensor(list(range(a.shape[i])), mstype.int32) dim_shape = validator.expanded_shape(ndim, a.shape[i], i) dim_grid = tensor_operator_registry.get('broadcast_to')(dim_grid.reshape(dim_shape), a.shape) grids.append(dim_grid) grid = tensor_operator_registry.get('stack')(grids, -1) indices = tensor_operator_registry.get('concatenate')((a.reshape(a.shape + (1,)), grid), -1) return tensor_operator_registry.get('gather_nd')(choices, indices).astype(dtype)
[docs] def searchsorted(self, v, side='left', sorter=None): """ Finds indices where elements should be inserted to maintain order. Args: v (Union[int, float, bool, list, tuple, Tensor]): Values to insert into the tensor. side (str, optional): If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of the tensor). Default: ``left`` . sorter (Union[int, list, tuple, Tensor]): optional tensor of integer indices that sort the tensor into ascending order on the innermost dimension and the type must be int64. They are typically the result of argsort. Default: ``None`` . CPU and GPU can only use default values Returns: Tensor, array of insertion points with the same shape as `v`. Raises: ValueError: If argument for `side` or `sorter` is invalid. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.array([1, 2, 3, 4, 5])) >>> print(x.searchsorted(3)) 2 """ if side not in ('left', 'right'): raise ValueError(f"For 'Tensor.searchsorted', the argument 'side' should be one of in " f"['left', 'right'], but got {side}.") if not isinstance(v, Tensor): v = tensor_operator_registry.get('make_tensor')(v) if sorter is not None: if not isinstance(sorter, (int, list, tuple, Tensor)): raise TypeError("For Tensor.searchsorted, the type of the argument 'sorter' must be one of 'int', " "'list', 'tuple', 'Tensor', but got {}.".format(type(sorter))) if not isinstance(sorter, Tensor): sorter = tensor_operator_registry.get('make_tensor')(sorter) if sorter.size != self.size: raise ValueError('The size of sorter must be the same as the Tensor') dtype = mstype.int32 right = (side == 'right') search_sorted_ = tensor_operator_registry.get('searchsorted')(dtype, right) return search_sorted_(self, v, sorter)
[docs] def gather_nd(self, indices): r""" For details, please refer to :func:`mindspore.ops.gather_nd`. """ validator.check_value_type('indices', indices, (Tensor, Tensor_,), 'Tensor.gather_nd') return tensor_operator_registry.get('gather_nd')(self, indices)
[docs] def uniform(self, from_=0., to=1., generator=None): r""" Generates random numbers that follows a uniform distribution within the half-open interval :math:`[from\_, to)`. .. math:: P(x)= \frac{1}{to - from\_} Args: from\_ (number): The lower bound of the interval. to (number): The upper bound of the interval. generator (Generator, optional): The random seed. Default: None. Returns: Tensor, with the same shape as tensor. Raises: TypeError: If `from_` is larger than `to`. Supported Platforms: ``Ascend`` Examples: >>> import mindspore >>> x = mindspore.ops.ones((4, 2)) >>> generator = mindspore.Generator() >>> generator.manual_seed(100) >>> output = x.uniform(1., 2., generator) >>> print(output.shape) (4, 2) """ return tensor_operator_registry.get('uniform')(self, from_, to, generator)
[docs] def uniform_(self, from_=0, to=1, *, generator=None): r""" Update the `self` tensor in place by generating random numbers sampled from uniform distribution in the half-open interval :math:`[from\_, to)`. .. math:: P(x)= \frac{1}{to - from\_} .. warning:: This is an experimental API that is subject to change or deletion. Args: from\_ (Union[number.Number, Tensor], optional): The lower bound of the uniform distribution, it can be a scalar value or a tensor of any dimension with a single element. Default: ``0``. to (Union[number.Number, Tensor], optional): The upper bound of the uniform distribution, it can be a scalar value or a tensor of any dimension with a single element. Default: ``1``. Keyword Args: generator (:class:`mindspore.Generator`, optional): a pseudorandom number generator. Default: ``None``, uses the default pseudorandom number generator. Returns: Return `self` Tensor. Raises: TypeError: If `from_` or `to` is neither a number nor a Tensor. TypeError: If dtype of `from` or `to` is not one of: bool, int8, int16, int32, int64, uint8, float32, float64. ValueError: If `from_` or `to` is Tensor but contains multiple elements. RuntimeError: If `from_` is larger than `to`. Supported Platforms: ``Ascend`` Examples: >>> import mindspore >>> x = mindspore.ops.ones((4, 2)) >>> generator = mindspore.Generator() >>> generator.manual_seed(100) >>> output = x.uniform_(1., 2., generator=generator) >>> print(output.shape) (4, 2) """ return tensor_operator_registry.get('uniform_')(self, from_=from_, to=to, generator=generator)
[docs] def sum_to_size(self, *size): r""" Sum self Tensor to the `size`. `size` must be expandable to the Tensor size. Args: size (Union[tuple(int), int]): The expected shape of output Tensor. Returns: Tensor, the sum result of self Tensor according to the `size`. Raises: ValueError: If `size` is not expandable to the size of self Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor(np.random.randn(3, 3, 3, 3, 3, 3), mindspore.float32) >>> output = x.sum_to_size((1, 3, 1, 3)) >>> print(output.shape) (1, 3, 1, 3) """ x = self if len(size) == 1 and isinstance(size[0], tuple): size = size[0] shape_x = x.shape if len(size) > x.ndim: raise ValueError(f"For sum_to_size, size {size} is not expandable to the tensor size {shape_x}.") if len(size) < x.ndim: pre_axis = tuple([axis for axis in range(x.ndim - len(size))]) x = x.sum(pre_axis) axes = [] for i, element in enumerate(size): if element != x.shape[i] and element == 1: axes.append(i) elif element != x.shape[i]: raise ValueError(f"For sum_to_size, size {size} is not expandable to the tensor size {shape_x}.") if axes: return x.sum(tuple(axes), keepdims=True) return x
[docs] def nanmean(self, axis=None, keepdims=False, *, dtype=None): r""" For details, please refer to :func:`mindspore.ops.nanmean`. """ return tensor_operator_registry.get('nanmean')(self, axis, keepdims, dtype=dtype)
[docs] def nanmedian(self, axis=-1, keepdims=False): r""" For details, please refer to :func:`mindspore.ops.nanmedian`. """ return tensor_operator_registry.get('nanmedian')(self, axis, keepdims)
[docs] def repeat(self, repeats, axis=None): """ Repeat elements of a tensor. Args: repeats (Union[int, tuple, list]): The number of repetitions for each element. `repeats` is broadcasted to fit the shape of the given axis. axis (int, optional): The axis along which to repeat values. By default, use the flattened input tensor, and return a flat output tensor. Default: ``None``. Returns: Tensor, has the same shape as input tensor except along the given axis. Raises: ValueError: If the axis is out of range. TypeError: If arguments have types not specified above. See also: - :func:`mindspore.Tensor.reshape`: Give a new shape to a tensor without changing its data. - :func:`mindspore.Tensor.resize`: Changes shape and size of tensor in-place. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.array(3)) >>> print(x.repeat(4)) [3 3 3 3] >>> x = Tensor(np.array([[1, 2],[3, 4]])) >>> print(x.repeat(2)) [1 1 2 2 3 3 4 4] >>> print(x.repeat(3, axis=1)) [[1 1 1 2 2 2] [3 3 3 4 4 4]] >>> print(x.repeat([1,2], axis=0)) [[1 2] [3 4] [3 4]] """ if not isinstance(repeats, (tuple, list)): repeats = (repeats,) for index, element in enumerate(repeats): if not isinstance(element, int): raise TypeError(f"For 'Tensor.repeat', each element in {repeats} should be int, but got " f"{type(element)} at index {index}.") input_x = self if axis is None: input_x = self.ravel() axis = 0 if axis is not None and not isinstance(axis, int): raise TypeError(f"For 'Tensor.repeat', the argument 'axis' should be int, but got {type(axis)}.") validator.check_axis_in_range(axis, input_x.ndim) axis = axis + input_x.ndim if axis < 0 else axis if len(repeats) == 1: repeats = repeats[0] if repeats == 0: return Tensor_(input_x.dtype, (0,)) return tensor_operator_registry.get('repeat_elements')(input_x, repeats, axis) size = input_x.shape[axis] if len(repeats) != size: raise ValueError(f"For 'Tensor.repeat', the length of 'repeats' must be the same as the shape of the " f"original tensor in the 'axis' dimension, but got the length of 'repeats' " f"{len(repeats)}, the shape of the original tensor in the 'axis' dimension {size}.") subs = tensor_operator_registry.get('tensor_split')(input_x, size, axis) repeated_subs = [] for sub, rep in zip(subs, repeats): if rep != 0: repeated_subs.append(tensor_operator_registry.get('repeat_elements')(sub, rep, axis)) return tensor_operator_registry.get('concatenate')(repeated_subs, axis)
[docs] def bernoulli(self, p=0.5, seed=None): r""" For details, please refer to :func:`mindspore.ops.bernoulli`. """ return tensor_operator_registry.get('bernoulli')(self, p, seed)
[docs] def random_(self, from_=0, to=None, *, generator=None): r""" Fill the tensor with numbers sampled from a discrete uniform distribution over an interval :math:`[from\_, to-1]`. .. warning:: This is an experimental API that is subject to change or deletion. Args: from\_ (Union[number.Number, Tensor], optional): the lower bound of the generated random number. It can be a scalar value or a tensor of any dimension with only a single element. Default: 0. to (Union[number.Number, Tensor], optional): the upper bound of the generated random number. By default it's the upper limit of the input data type. It can be a scalar value or a tensor of any dimension with only a single element. Default: ``None``. Keyword Args: generator (:class:`mindspore.Generator`, optional): a pseudorandom number generator. Default: ``None``, uses the default pseudorandom number generator. Returns: The input tensor. Raises: TypeError: If `from_` or `to` is not integer. RuntimeError: If `from_` >= `to`. Supported Platforms: ``Ascend`` Examples: >>> from mindspore import Tensor >>> a = Tensor([[2, 3, 4], [1, 2, 3]]) >>> from_ = 0 >>> to = 5 >>> print(a.random_(from_, to).shape) (2, 3) """ return tensor_operator_registry.get('random_')(self, from_=from_, to=to, generator=generator)
[docs] def random_categorical(self, num_sample, seed=0, dtype=mstype.int64): r""" For details, please refer to :func:`mindspore.ops.random_categorical`. """ validator.check_is_int(num_sample, 'num_sample') validator.check_is_int(seed, 'seed') return tensor_operator_registry.get('random_categorical')(self, num_sample, seed, dtype)
[docs] def gather_elements(self, dim, index): """ For details, please refer to :func:`mindspore.ops.gather_elements`. """ validator.check_value_type('index', index, (Tensor, Tensor_,), 'Tensor.gather_elements') return tensor_operator_registry.get('gather_elements')(self, dim, index)
[docs] def nonzero(self, *, as_tuple=False): r""" Return the positions of all non-zero values. Note: The rank of `self`. - Ascend: its rank can be equal to 0 except O2 mode. - CPU/GPU: its rank should be greater than or eaqual to 1. Keyword Args: as_tuple (bool, optional): Whether the output is tuple. If ``False`` , return Tensor. Default: ``False`` . If ``True`` , return Tuple of Tensor, only support ``Ascend`` . Returns: - If `as_tuple` is ``False``, return the Tensor, a 2-D Tensor whose data type is int64, containing the positions of all non-zero values of the `self` . - If `as_tuple` is ``True``, return the Tuple of Tensor and data type is int64. The Tuple length is the dimension of the `self` tensor, and each element is the 1D tensor of the subscript of all non-zero elements of the `self` tensor in that dimension. Raises: TypeError: If `self` is not Tensor. TypeError: If `as_tuple` is not bool. RuntimeError: On GPU or CPU or Ascend O2 mode, if dim of `input` equals to 0. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.array([[[1, 0], [-5, 0]]]), mindspore.int32) >>> output = x.nonzero() >>> print(output) [[0 0 0] [0 1 0]] >>> x = Tensor(np.array([1, 0, 2, 0, 3]), mindspore.int32) >>> output = x.nonzero(as_tuple=False) >>> print(output) [[0] [2] [4]] >>> x = Tensor(np.array([[[1, 0], [-5, 0]]]), mindspore.int32) >>> output = x.nonzero(as_tuple=True) >>> print(output) (Tensor(shape=[2], dtype=Int64, value=[0, 0]), Tensor(shape=[2], dtype=Int64, value=[0, 1]), Tensor(shape=[2], dtype=Int64, value=[0, 0])) >>> x = Tensor(np.array([1, 0, 2, 0, 3]), mindspore.int32) >>> output = x.nonzero(as_tuple=True) >>> print(output) (Tensor(shape=[3], dtype=Int64, value=[0, 2, 4]), ) """ return tensor_operator_registry.get('nonzero')(self, as_tuple=as_tuple)
[docs] def svd(self, full_matrices=False, compute_uv=True): """ For details, please refer to :func:`mindspore.ops.svd`. """ svd_op = tensor_operator_registry.get("svd") if compute_uv: return svd_op(full_matrices, compute_uv)(self) s, _, _ = svd_op(full_matrices, compute_uv)(self) return s
[docs] def heaviside(self, values): r""" For details, please refer to :func:`mindspore.ops.heaviside`. """ return tensor_operator_registry.get('heaviside')(self, values)
[docs] def hypot(self, other): r""" For details, please refer to :func:`mindspore.ops.hypot`. """ return tensor_operator_registry.get('hypot')(self, other)
def soft_shrink(self, lambd=0.5): r""" For details, please refer to :func:`mindspore.ops.soft_shrink`. """ return tensor_operator_registry.get('soft_shrink')(self, lambd) def matrix_determinant(self): r""" For details, please refer to :func:`mindspore.ops.matrix_determinant`. """ return tensor_operator_registry.get('matrix_determinant')(self) def log_matrix_determinant(self): r""" For details, please refer to :func:`mindspore.ops.log_matrix_determinant`. """ return tensor_operator_registry.get('log_matrix_determinant')(self)
[docs] def to_coo(self): """ Convert a Tensor to COOTensor. Note: Only 2-D tensor is supported for now. Returns: COOTensor, a sparse representation of the original dense tensor, containing the following parts. - indices (Tensor): 2-D integer tensor, indicates the positions of `values` of the dense tensor. - values (Tensor): 1-D tensor, indicates the non-zero values of the dense tensor. - shape (tuple(int)): the shape of the COOTensor, is the same as the original dense tensor. Raises: ValueError: If input tensor is not 2-D. Supported Platforms: ``GPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor(np.array([[1, 0], [-5, 0]]), mindspore.float32) >>> output = x.to_coo() >>> print(output.indices, output.values, output.shape) [[0 0] [1 0]] [ 1. -5.] (2, 2) """ return tensor_operator_registry.get('dense_to_sparse_coo')(self)
[docs] def to_csr(self): """ Convert a Tensor to CSRTensor. Note: Only 2-D tensor is supported for now. Returns: CSRTensor, a sparse representation of the original dense tensor, containing the following parts. - indptr (Tensor): 1-D integer tensor, indicates the start and end point for `values` in each row. - indices (Tensor): 1-D integer tensor, indicates the column positions of all non-zero values of the input. - values (Tensor): 1-D tensor, indicates the non-zero values of the dense tensor. - shape (tuple(int)): the shape of the CSRTensor, is the same as the original dense tensor. Raises: ValueError: If input tensor is not 2-D. Supported Platforms: ``GPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor(np.array([[1, 0], [-5, 0]]), mindspore.float32) >>> output = x.to_csr() >>> print(output.indptr, output.indices, output.values, output.shape) [0 1 2] [0 0] [ 1. -5.] (2, 2) """ return tensor_operator_registry.get('dense_to_sparse_csr')(self)
[docs] def tolist(self): r""" Convert a Tensor to List. If the input is Tensor scalar, a Python scalar will be returned. Returns: List or Python scalar. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> x = ms.Tensor([[1, 2, 3], [4, 5, 6]]) >>> out1 = x.tolist() >>> print(out1) [[1, 2, 3], [4, 5, 6]] >>> out2 = x[0][0].tolist() >>> print(out2) 1 """ return self.asnumpy().tolist()
[docs] def unsorted_segment_min(self, segment_ids, num_segments): r""" For details, please refer to :func:`mindspore.ops.unsorted_segment_min`. """ return tensor_operator_registry.get('unsorted_segment_min')(self, segment_ids, num_segments)
[docs] def unsorted_segment_max(self, segment_ids, num_segments): r""" For details, please refer to :func:`mindspore.ops.unsorted_segment_max`. """ return tensor_operator_registry.get('unsorted_segment_max')(self, segment_ids, num_segments)
[docs] def unsorted_segment_prod(self, segment_ids, num_segments): r""" For details, please refer to :func:`mindspore.ops.unsorted_segment_prod`. """ return tensor_operator_registry.get('unsorted_segment_prod')(self, segment_ids, num_segments)
[docs] def unique_consecutive(self, return_idx=False, return_counts=False, axis=None): """ For details, please refer to :func:`mindspore.ops.unique_consecutive`. """ output, idx, counts = tensor_operator_registry.get("unique_consecutive")(return_idx, return_counts, axis)(self) if return_idx and return_counts: return output, idx, counts if return_idx: return output, idx if return_counts: return output, counts return output
[docs] def unique_with_pad(self, pad_num): """ For details, please refer to :func:`mindspore.ops.unique_with_pad`. """ return tensor_operator_registry.get("unique_with_pad")(self, pad_num)
[docs] def diag(self): r""" For details, please refer to :func:`mindspore.ops.diag`. """ return tensor_operator_registry.get('diag')(self)
[docs] def diagflat(self, offset=0): r""" For details, please refer to :func:`mindspore.ops.diagflat`. """ return tensor_operator_registry.get('diagflat')(self, offset)
[docs] def xdivy(self, y): r""" For details, please refer to :func:`mindspore.ops.xdivy`. """ return tensor_operator_registry.get("xdivy")(self, y)
[docs] def tensor_split(self, indices_or_sections, axis=0): """ For details, please refer to :func:`mindspore.ops.tensor_split`. """ return tensor_operator_registry.get('tensor_split')(self, indices_or_sections, axis)
[docs] def vsplit(self, indices_or_sections): """ For details, please refer to :func:`mindspore.ops.vsplit`. """ return tensor_operator_registry.get('vsplit')(self, indices_or_sections)
[docs] def hsplit(self, indices_or_sections): """ For details, please refer to :func:`mindspore.ops.hsplit`. """ return tensor_operator_registry.get('hsplit')(self, indices_or_sections)
[docs] def dsplit(self, indices_or_sections): """ For details, please refer to :func:`mindspore.ops.dsplit`. """ return tensor_operator_registry.get('dsplit')(self, indices_or_sections)
[docs] def xlogy(self, y): r""" For details, please refer to :func:`mindspore.ops.xlogy`. The parameter `y` of the current interface is the same as the parameter `other` of the reference interface. """ return tensor_operator_registry.get("xlogy")(self, y)
[docs] def eigvals(self): r""" For details, please refer to :func:`mindspore.ops.eigvals`. .. warning:: This is an experimental API that is subject to change or deletion. """ return tensor_operator_registry.get("eigvals")()(self)
def top_k(self, k, sorted=True): r""" `Tensor.top_k` is deprecated, please use `Tensor.topk` instead. """ validator.check_is_int(k, 'k') validator.check_bool(sorted, 'sorted') return tensor_operator_registry.get("top_k")(self, k, sorted)
[docs] def bmm(self, mat2): r""" For details, please refer to :func:`mindspore.ops.bmm`. """ return tensor_operator_registry.get('bmm')(self, mat2)
[docs] def to(self, dtype): r""" Performs tensor dtype conversion. Note: - If the `self` Tensor already has the correct `mindspore.dtype`, then self is returned. Otherwise, the returned tensor is a copy of `self` with the desired mindspore.dtype. - When converting complex numbers to boolean type, the imaginary part of the complex number is not taken into account. As long as the real part is non-zero, it returns True; otherwise, it returns False. Args: dtype (dtype.Number): The valid data type of the output tensor. Only constant value is allowed. Returns: Tensor, converted to the specified `dtype`. Raises: TypeError: If `dtype` is not a Number. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32) >>> input_x = Tensor(input_np) >>> dtype = mindspore.int32 >>> output = input_x.to(dtype) >>> print(output.dtype) Int32 """ return self if self.dtype == dtype else self._to(dtype)
[docs] def type(self, dtype=None): r""" Change the dtype of the Tensor to the `dtype` . Return the type if `dtype` is ``None`` . Args: dtype (mindspore.dtype, optional): The specified dtype of output tensor. Default: ``None``. Returns: Tensor or str. If `dtype` is ``None`` , return a str, which describes the dtype of Tensor. If `dtype` is not ``None`` , then return a Tensor, and the dtype of returned Tensor is `dtype` . Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor([[1.2, 2], [3.4, 4]], dtype=mindspore.float32) >>> print(x.type()) Float32 >>> print(x.type(dtype=mindspore.int32)) [[1 2] [3 4]] """ if dtype is None: return str(self.dtype) return self.astype(dtype)
[docs] def type_as(self, other): r""" Returns self tensor cast to the type of the with the input other tensor. .. warning:: This is an experimental API that is subject to change or deletion. Note: When converting complex numbers to boolean type, the imaginary part of the complex number is not taken into account. As long as the real part is non-zero, it returns True; otherwise, it returns False. Args: other (Tensor): The tensor whose data type is specified. The shape of tensor is :math:`(x_0, x_1, ..., x_R)`. Returns: Tensor, the shape of tensor is the same as `self`, :math:`(x_0, x_1, ..., x_R)`. Raises: TypeError: If `other` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32) >>> self = Tensor(input_np) >>> other_np = np.random.randn(2, 3, 4).astype(np.int32) >>> other = Tensor(other_np) >>> output = self.type_as(other) >>> print(output.dtype) Int32 >>> print(output.shape) (2, 3, 4, 5) """ if self.dtype == other.dtype: return self return Tensor_.type_as(self, other)
[docs] def bool(self): r""" Converts input tensor dtype to `bool`. If the value in tensor is zero, it will be `False`, otherwise it will be `True`. Returns: Tensor, converted to the `bool` dtype. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> input_x = Tensor(np.ones([2,2]), mindspore.float32) >>> output = input_x.bool() >>> print(output.dtype) Bool """ return self.to(mstype.bool_)
[docs] def float(self): r""" Converts input tensor dtype to `float32`. Returns: Tensor, converted to the `float32` dtype. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> input_x = Tensor(np.ones([2,2]), mindspore.int32) >>> output = input_x.float() >>> print(output.dtype) Float32 """ return self.to(mstype.float32)
[docs] def bfloat16(self): r""" Converts input tensor dtype to `bfloat16`. Returns: Tensor, converted to the `bfloat16` dtype. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> input_x = Tensor(np.ones([2,2]), mindspore.int32) >>> output = input_x.bfloat16() >>> print(output.dtype) BFloat16 """ return self.to(mstype.bfloat16)
[docs] def double(self): r""" Converts input tensor dtype to `float64`. Returns: Tensor, converted to the `float64` dtype. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> input_x = Tensor(np.ones([2,2]), mindspore.int32) >>> output = input_x.double() >>> print(output.dtype) Float64 """ return self.to(mstype.float64)
[docs] def half(self): r""" Converts input tensor dtype to `float16`. Returns: Tensor, converted to the `float16` dtype. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> input_x = Tensor(np.ones([2,2]), mindspore.int32) >>> output = input_x.half() >>> print(output.dtype) Float16 """ return self.to(mstype.float16)
[docs] def int(self): r""" Converts input tensor dtype to `int32`. If the value in tensor is float or half, the decimal will be discarded. Returns: Tensor, converted to the `int32` dtype. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> input_x = Tensor(np.ones([2,2]), mindspore.float32) >>> output = input_x.int() >>> print(output.dtype) Int32 """ return self.to(mstype.int32)
[docs] def byte(self): r""" Converts input tensor dtype to `uint8`. Returns: Tensor, converted to the `uint8` dtype. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> input_x = Tensor(np.ones([2,2]), mindspore.float32) >>> output = input_x.byte() >>> print(output.dtype) UInt8 """ return self.to(mstype.uint8)
[docs] def long(self): r""" Converts input tensor dtype to `int64`. If the value in tensor is float or half, the decimal will be discarded. Returns: Tensor, converted to the `int64` dtype. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> input_x = Tensor(np.ones([2,2]), mindspore.int32) >>> output = input_x.long() >>> print(output.dtype) Int64 """ return self.to(mstype.int64)
[docs] def short(self): r""" Return a copy of the tensor, cast to int16 type, equivalent to self.astype(mstype.int16). If the value in tensor is float or half, the decimal will be discarded. For details, please refer to :func:`mindspore.Tensor.astype`. Returns: Tensor, converted to the `int16` dtype. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> import numpy as np >>> x = ms.Tensor(np.array([1,2,3,4,5]), ms.int32) >>> output = x.short() >>> output Tensor(shape=[5], dtype=Int16, value= [1, 2, 3, 4, 5]) """ return self.to(mstype.int16)
[docs] def cholesky(self, upper=False): r""" For details, please refer to :func:`mindspore.ops.cholesky`. """ return tensor_operator_registry.get('cholesky')(self, upper=upper)
def cholesky_inverse(self, upper=False): r""" This interface is deprecated from version 2.4 and will be removed in a future version. """ return tensor_operator_registry.get('cholesky_inverse')(self, upper=upper)
[docs] def cholesky_solve(self, input2, upper=False): r""" For details, please refer to :func:`mindspore.ops.cholesky_solve`. .. warning:: This is an experimental API that is subject to change or deletion. """ return tensor_operator_registry.get('cholesky_solve')(self, input2, upper)
[docs] def conj(self): r""" For details, please refer to :func:`mindspore.ops.conj`. """ return tensor_operator_registry.get('conj')(self)
[docs] def count_nonzero(self, axis=(), keep_dims=False, dtype=mstype.int32): r""" For details, please refer to :func:`mindspore.ops.count_nonzero`. """ return tensor_operator_registry.get('count_nonzero')(self, axis, keep_dims, dtype)
[docs] def cross(self, other, dim=None): r""" For details, please refer to :func:`mindspore.ops.cross`. """ return tensor_operator_registry.get('cross')(self, other, dim)
[docs] def erfinv(self): r""" For details, please refer to :func:`mindspore.ops.erfinv`. """ return tensor_operator_registry.get('erfinv')(self)
def erfinv_(self): r""" In-place version of erfinv(), for details, please refer to :func:`mindspore.ops.erfinv`. .. warning:: This is an experimental API that is subject to change or deletion. """ return tensor_operator_registry.get('erfinv_')(self)
[docs] def lcm(self, other): r""" For details, please refer to :func:`mindspore.ops.lcm`. """ return tensor_operator_registry.get('lcm')(self, other)
[docs] def ldexp(self, other): r""" For details, please refer to :func:`mindspore.ops.ldexp`. """ return tensor_operator_registry.get('ldexp')(self, other)
[docs] def fold(self, output_size, kernel_size, dilation=1, padding=0, stride=1): r""" For details, please refer to :func:`mindspore.ops.fold`. """ return tensor_operator_registry.get('fold')(self, output_size, kernel_size, dilation, padding, stride)
[docs] def unfold(self, kernel_size, dilation=1, padding=0, stride=1): r""" For details, please refer to :func:`mindspore.ops.unfold`. .. warning:: This is an experimental API that is subject to change or deletion. """ return tensor_operator_registry.get('unfold')(self, kernel_size, dilation, padding, stride)
[docs] def expand(self, size): r""" For details, please refer to :func:`mindspore.ops.broadcast_to`. The parameter `size` of the current interface is the same as the parameter `shape` of the reference interface. """ if isinstance(size, Tensor): size = tensor_operator_registry.get('tensortotuple')()(size) return tensor_operator_registry.get('expand')(self, size)
[docs] def cumprod(self, dim, dtype=None): r""" For details, please refer to :func:`mindspore.ops.cumprod`. """ return tensor_operator_registry.get('cumprod')(self, dim, dtype)
[docs] def multiply(self, value): r""" For details, please refer to :func:`mindspore.ops.mul`. The parameter `value` of the current interface is the same as the parameter `other` of the reference interface. """ return tensor_operator_registry.get('multiply')(self, value)
[docs] def equal(self, other): r""" For details, please refer to :func:`mindspore.ops.equal`. """ return tensor_operator_registry.get('equal')(self, other)
[docs] def index_add(self, dim, index, source, *, alpha=1): r""" For details, please refer to :func:`mindspore.ops.index_add`. The corresponding relationships between the parameters of `Tensor.index_add` and :func:`mindspore.ops.index_add` are as follows: `dim` -> `axis`, `index` -> `indices`, `source * alpha` -> `y`. """ check_is_number(alpha, (int, float)) source = tensor_operator_registry.get('__mul__')(source, alpha) return tensor_operator_registry.get('index_add')(self, indices=index, y=source, axis=dim)
[docs] def index_add_(self, dim, index, source, *, alpha=1): r""" Accumulate the elements of `alpha` times `source` into the `self` by adding to the index in the order given in `index`. For example, if `dim == 0`, `index[i] == j`, and `alpha = -1`, then the `i` th row of `source` is subtracted from the `j` th row of `self` . The `dim` th dimension of `source` must have the same size as the length of `index` , and all other dimensions must match `self`, or an error will be raised. For a 3-D tensor the output is defined as follows: .. math:: \begin{array}{ll} self[index[i],\ :,\ :]\ +=\ alpha * src[i,\ :,\ :] \qquad \#if\ dim == 0 \\ self[:,\ \ index[i],\ :]\ +=\ alpha * src[:,\ \ i,\ :] \qquad \#if\ dim == 1 \\ self[:,\ :,\ \ index[i]]\ +=\ alpha * src[:,\ :,\ \ i] \qquad\#if\ dim == 2 \\ \end{array} .. warning:: This is an experimental API that is subject to change or deletion. Args: dim (int): The dimension along which to index. index (Tensor): Add the value of `self` and `source` along the dimension of the `dim` according to the specified index value, with data type int32. The `index` must be 1D with the same size as the size of `source` in the `dim` dimension. The values of `index` should be in [0, b), where the b is the size of `self` in the `dim` dimension. source (Tensor): The input tensor with the value to add. Must have same data type as `self`. The shape must be the same as `self` except the `dim` th dimension. Keyword Args: alpha (number, optional): The scalar multiplier for source. Default: ``1``. Returns: Tensor, has the same shape and dtype as `self`. Raises: TypeError: If neither `index` nor `source` is a Tensor. ValueError: If dim is out of `self` rank's range. ValueError: If `self` rank is not the same as `source` rank. ValueError: If shape of `index` is not 1D or size of `index` is not equal to dimension of `source[dim]`. ValueError: If `source`'s shape is not the same as `self` except the `dim` th dimension. Supported Platforms: ``Ascend`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32) >>> index = Tensor(np.array([0, 2]), mindspore.int32) >>> y = Tensor(np.array([[0.5, 1.0], [1.0, 1.5], [2.0, 2.5]]), mindspore.float32) >>> output = x.index_add_(1, index, y, alpha=1) >>> print(output) [[ 1.5 2. 4. ] [ 5. 5. 7.5] [ 9. 8. 11.5]] >>> print(x) [[ 1.5 2. 4. ] [ 5. 5. 7.5] [ 9. 8. 11.5]] """ return tensor_operator_registry.get('index_add_')(self, dim, index, source, alpha)
[docs] def igamma(self, other): r""" For details, please refer to :func:`mindspore.ops.igamma`. """ return tensor_operator_registry.get('igamma')(self, other)
[docs] def igammac(self, other): r""" For details, please refer to :func:`mindspore.ops.igammac`. """ return tensor_operator_registry.get('igammac')(self, other)
[docs] def isnan(self): r""" For details, please refer to :func:`mindspore.ops.ne`. """ return self.ne(self)
[docs] def flip(self, dims): """ For details, please refer to :func:`mindspore.ops.flip`. """ return tensor_operator_registry.get('flip')(self, dims)
[docs] def fliplr(self): """ For details, please refer to :func:`mindspore.ops.fliplr`. """ return tensor_operator_registry.get('fliplr')(self)
[docs] def flipud(self): """ For details, please refer to :func:`mindspore.ops.flipud`. """ return tensor_operator_registry.get('flipud')(self)
[docs] def is_floating_point(self): """ For details, please refer to :func:`mindspore.ops.is_floating_point`. """ return tensor_operator_registry.get('is_floating_point')(self)
[docs] def is_signed(self): """ Judge whether the data type of tensor is a signed data type. Returns: Bool. If the dtype of `self` is a signed data type, return True. Otherwise, return False. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> x = ms.Tensor([1, 2, 3], ms.int64) >>> y = ms.Tensor([1, 2, 3], ms.uint64) >>> output = x.is_signed() >>> output2 = y.is_signed() >>> print(output) True >>> print(output2) False """ return self.dtype in mstype.signed_type
[docs] def logical_xor(self, other): r""" For details, please refer to :func:`mindspore.ops.logical_xor`. """ return tensor_operator_registry.get('logical_xor')(self, other)
def lstsq(self, A): r""" This interface is deprecated from version 2.4 and will be removed in a future version. """ return tensor_operator_registry.get('lstsq')(self, A) @property def mH(self): r""" Accessing this property is equivalent to Calling self.adjoint(). For details, please refer to :func:`mindspore.ops.adjoint`. Examples: >>> from mindspore import Tensor >>> import numpy as np >>> x = Tensor(np.array([[0. + 0.j, 1. + 1.j], [2. + 2.j, 3. + 3.j]])) >>> output = x.mH >>> print(output) [[0.-0.j 2.-2.j] [1.-1.j 3.-3.j]] """ return self.adjoint() @property def mT(self): r""" Returns the Tensor that exchanges the last two dimensions. Accessing the attribute, x.mT, is equal to calling the method, x.swapaxes(-2, -1). For details, please refer to :func:`mindspore.Tensor.swapaxes`. Examples: >>> from mindspore import Tensor >>> import numpy as np >>> x = Tensor(np.ones((2, 3, 4))) >>> output = x.mT >>> print(output.shape) (2, 4, 3) """ return self.swapaxes(-2, -1)
[docs] def mvlgamma(self, p): r""" For details, please refer to :func:`mindspore.ops.mvlgamma`. """ return tensor_operator_registry.get('mvlgamma')(self, p)
[docs] def inner(self, other): r""" For details, please refer to :func:`mindspore.ops.inner`. """ return tensor_operator_registry.get('inner')(self, other)
[docs] def multinomial(self, num_samples, replacement=True, seed=None): r""" For details, please refer to :func:`mindspore.ops.multinomial`. """ return tensor_operator_registry.get('multinomial')(self, num_samples, replacement, seed)
def matrix_power(self, n): r""" This interface is deprecated from version 2.4 and will be removed in a future version. """ return tensor_operator_registry.get('matrix_power')(self, n)
[docs] def msort(self): r""" For details, please refer to :func:`mindspore.ops.msort`. """ return tensor_operator_registry.get('msort')(self)
[docs] def zero_(self): r""" Return a tensor filled with zeros. .. warning:: This is an experimental API that is subject to change or deletion. Returns: Return a tensor. Fill self tensor with zeros. Supported Platforms: ``Ascend`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor(np.array([2, 2])) >>> output = x.zero_() >>> print(output) [0 0] """ return tensor_operator_registry.get('zero_')(self)
def new_empty(self, size, *, dtype=None, device=None): r""" Returns an uninitialized Tensor of `size`. Its dtype is specified by `dtype` and its device is specified by `device`. .. warning:: This is an experimental API that is subject to change or deletion. Args: size (Union[tuple[int], list[int], int]): The specified shape of output tensor. Only positive integer or tuple or list containing positive integers are allowed. Keyword Args: dtype (:class:`mindspore.dtype`, optional): The specified dtype of the output tensor. If `dtype = None`, the tensor will have the same dtype as `self`. Default ``None``. device (string, optional): The specified device of the output tensor. Support ``CPU`` and ``Ascend``. If `device = None`, the tensor will have the same device as `self` and if the device of `self` is not defined, the value set by :func:`mindspore.set_device` will be used. Default ``None``. Returns: Tensor, the shape, dtype and device is defined above but with uninitialized data (May be a random value). Raises: TypeError: If `size` is neither an int nor a tuple or list of int. Supported Platforms: ``Ascend`` Examples: >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor([[1, 2, 3], [4, 5, 6]]) >>> output1 = x.new_empty((2, 3)) >>> print(output1) [[0 0 0] [0 0 0]] >>> output2 = x.new_empty((2, 3), dtype=mindspore.float64) >>> print(output2) [[0. 0. 0.] [0. 0. 0.]] """ return tensor_operator_registry.get('new_empty')(self, size, dtype, device)
[docs] def sign(self): r""" For details, please refer to :func:`mindspore.ops.sign`. """ return tensor_operator_registry.get('sign')(self)
[docs] def signbit(self): """ For details, please refer to :func:`mindspore.ops.signbit`. """ return tensor_operator_registry.get('signbit')(self)
[docs] def sgn(self): """ For details, please refer to :func:`mindspore.ops.sgn`. """ return tensor_operator_registry.get('sgn')(self)
[docs] def imag(self): r""" For details, please refer to :func:`mindspore.ops.imag`. """ return tensor_operator_registry.get('imag')(self)
def quantile(self, q, axis=None, keepdims=False): r""" This interface is deprecated from version 2.4 and will be removed in a future version. """ return tensor_operator_registry.get('quantile')(self, q, axis, keepdims) def nanquantile(self, q, axis=None, keepdims=False): """ This interface is deprecated from version 2.4 and will be removed in a future version. """ return tensor_operator_registry.get('nanquantile')(self, q, axis, keepdims)
[docs] def orgqr(self, input2): r""" For details, please refer to :func:`mindspore.ops.orgqr`. """ return tensor_operator_registry.get('orgqr')(self, input2)
[docs] def lu_solve(self, LU_data, LU_pivots): r""" For details, please refer to :func:`mindspore.ops.lu_solve`. .. warning:: This is an experimental API that is subject to change or deletion. """ return tensor_operator_registry.get('lu_solve')(self, LU_data, LU_pivots)
[docs] def nextafter(self, other): r""" For details, please refer to :func:`mindspore.ops.nextafter`. """ return tensor_operator_registry.get('nextafter')(self, other)
def qr(self, some=True): r""" This interface is deprecated from version 2.4 and will be removed in a future version. """ validator.check_value_type('some', some, bool, 'Tensor.qr') return tensor_operator_registry.get('qr')(self, 'reduced' if some else 'complete')
[docs] def ormqr(self, input2, input3, left=True, transpose=False): r""" For details, please refer to :func:`mindspore.ops.ormqr`, Args `input2` and `input3` correspond to the args `tau` and `other` of :func:`mindspore.ops.ormqr`. """ return tensor_operator_registry.get('ormqr')(self, input2, input3, left, transpose)
[docs] def masked_scatter(self, mask, x): r""" Updates the value in the "self Tensor" with the `tensor` value according to the mask, and returns a Tensor. The shape of `mask` and the "self Tensor" must be the same or `mask` is broadcastable. .. warning:: This is an experimental API that is subject to change or deletion. Args: mask (Tensor[bool]): A bool tensor with a shape broadcastable to the "self Tensor". x (Tensor): A tensor with the same data type as the "self Tensor". The number of elements must be greater than or equal to the number of True's in `mask`. Returns: Tensor, with the same type and shape as the "self Tensor". Raises: TypeError: If `mask` or `x` is not a Tensor. TypeError: If data type of the "self Tensor" is not be supported. TypeError: If dtype of `mask` is not bool. TypeError: If the dim of the "self Tensor" less than the dim of `mask`. ValueError: If `mask` can not be broadcastable to the "self Tensor". ValueError: If the number of elements in `x` is less than the number required for the updates. Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor(np.array([1., 2., 3., 4.]), mindspore.float32) >>> mask = Tensor(np.array([True, True, False, True]), mindspore.bool_) >>> tensor = Tensor(np.array([5., 6., 7.]), mindspore.float32) >>> output = x.masked_scatter(mask, tensor) >>> print(output) [5. 6. 3. 7.] """ return tensor_operator_registry.get('masked_scatter')()(self, mask, x)
[docs] def index_put(self, indices, values, accumulate=False): r""" Based on the indices in `indices`, replace the corresponding elements in Tensor `self` with the values in `values`. Outplace version of :func:`mindspore.Tensor.index_put_` 。 .. warning:: The behavior is unpredictable in the following scenario: - If `accumulate` is `False` and `indices` contains duplicate elements. Args: indices (tuple[Tensor], list[Tensor]): the indices of type int32 or int64, used to index into the `self`. The rank of tensors in indices should be 1-D, size of indices should <= `self.rank` and the tensors in indices should be broadcastable. values (Tensor): 1-D Tensor with the same type as `self`. `values` should be broadcastable with size 1. accumulate (bool, optional): If `accumulate` is `True`, the elements in `values` will be added to `self`, otherwise the elements in `values` will replace the corresponding elements in the `self`. Default: ``False``. Returns: Tensor, with the same type and shape as the "self Tensor". Raises: TypeError: If the dtype of the `self` is not equal to the dtype of `values`. TypeError: If the dtype of `indices` is not tuple[Tensor], list[Tensor]. TypeError: If the dtype of tensors in `indices` are not int32 or int64. TypeError: If the dtype of tensors in `indices` are inconsistent. TypeError: If the dtype of `accumulate` is not bool. ValueError: If rank(`values`) is not 1-D. ValueError: If size(`values`) is not 1 or max size of the tensors in `indices` when rank(`self`) == size(`indices`). ValueError: If size(`values`) is not 1 or `self`.shape[-1] when rank(`self`) > size(`indices`). ValueError: If the rank of tensors in `indices` is not 1-D. ValueError: If the tensors in `indices` is not be broadcastable. ValueError: If size(`indices`) > rank(`self`). Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6]]).astype(np.int32)) >>> values = Tensor(np.array([3]).astype(np.int32)) >>> indices = [Tensor(np.array([0, 1, 1]).astype(np.int32)), Tensor(np.array([1, 2, 1]).astype(np.int32))] >>> accumulate = True >>> output = x.index_put(indices, values, accumulate) >>> print(output) [[1 5 3] [4 8 9]] """ validator.check_value_type('accumulate', accumulate, bool, 'Tensor.index_put') _index_put = tensor_operator_registry.get('index_put')(0 if accumulate is False else 1) return _index_put(self, values, indices)
[docs] def index_put_(self, indices, values, accumulate=False): r""" Based on the indices in `indices`, replace the corresponding elements in Tensor `self` with the values in `values`. The expression `Tensor.index_put_(indices, values)` is equivalent to `tensor[indices] = values`. Update and return `self`. .. warning:: The behavior is unpredictable in the following scenario: - If `accumulate` is `False` and `indices` contains duplicate elements. Args: indices (tuple[Tensor], list[Tensor]): the indices of type is bool, uint8, int32 or int64, used to index into the `self`. The size of indices should <= the rank of `self` and the tensors in indices should be broadcastable. values (Tensor): Tensor with the same type as `self`. If size == 1, it will be broadcastable. accumulate (bool, optional): If `accumulate` is `True`, the elements in `values` will be added to `self`, otherwise the elements in `values` will replace the corresponding elements in the `self`. Default: ``False``. Returns: Tensor `self`. Raises: TypeError: If the dtype of the `self` is not equal to the dtype of `values`. TypeError: If the dtype of `indices` is not tuple[Tensor], list[Tensor]. TypeError: If the dtype of tensors in `indices` are not bool, uint8, int32 or int64. TypeError: If the dtypes of tensors in `indices` are inconsistent. TypeError: If the dtype of `accumulate` is not bool. ValueError: If size(`values`) is not 1 or max size of the tensors in `indices` when rank(`self`) == size(`indices`). ValueError: If size(`values`) is not 1 or `self`.shape[-1] when rank(`self`) > size(`indices`). ValueError: If the tensors in `indices` is not be broadcastable. ValueError: If size(`indices`) > rank(`self`). Supported Platforms: ``Ascend`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6]]).astype(np.int32)) >>> values = Tensor(np.array([3]).astype(np.int32)) >>> indices = [Tensor(np.array([0, 1, 1]).astype(np.int32)), Tensor(np.array([1, 2, 1]).astype(np.int32))] >>> accumulate = True >>> x.index_put_(indices, values, accumulate) >>> print(x) [[1 5 3] [4 8 9]] """ index_put_ = tensor_operator_registry.get('index_put_') return index_put_(self, indices, values, accumulate)
[docs] def move_to(self, to, blocking=True): r""" Copy Tensor to target device synchronously or asynchronously, default synchronously. only support PyNative mode. Args: to (str): a string type value, one of ``"Ascend"``, ``"GPU"``, ``"CPU"``. blocking (bool): a bool type value, using synchronous copy or asynchronous copy. Default: ``True`` , synchronous copy. Returns: New Tensor, storged on target device which with the same type and shape as the "self Tensor". Raises: ValueError: If the type of `blocking` is not bool type. ValueError: If the value of `to` is not one of ``"Ascend"``, ``"GPU"``, ``"CPU"``. ValueError: If the run mode is not PyNative mode. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor >>> x = ms.Tensor([1, 2, 3], ms.int64) >>> new_tensor = x.move_to("CPU") """ if not isinstance(blocking, bool): raise ValueError(f"The type of 'blocking' must be bool, but got {blocking}") if to not in ("Ascend", "GPU", "CPU"): raise ValueError(f"The value of 'to' must be one of ['Ascend', 'GPU', 'CPU'], but got {to}") mode = context.get_context("mode") if mode != context.PYNATIVE_MODE: raise ValueError(f"The method of 'move_to' only supported in pynative mode, but got: {mode}.") return Tensor_.move_to(self, to, blocking)
def _offload(self): r""" Offload tensor parameter to host. Currently, only support for pynative mode. Supported Platforms: ``Ascend`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor >>> x = ms.Tensor([1, 2, 3], ms.int64) >>> x._offload() """ return Tensor_._offload(self) def _data_ptr(self): r""" Get the data ptr address of tensor, for CPU is host address, GPU/NPU is device address. User should know how to use the data ptr address. Note: this api is an experimental api, users need understatnd it before use. Supported Platforms: ``CPU/GPU/Ascend`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor >>> x = ms.Tensor([1, 2, 3], ms.int64) >>> data_ptr = x._data_ptr() """ return Tensor_._data_ptr(self)
[docs] def normal_(self, mean=0, std=1, *, generator=None): r""" Update the `self` tensor in place by generating random numbers sampled from the normal distribution which constructed by the parameters `mean` and `std`. .. warning:: This is an experimental API that is subject to change or deletion. Args: mean (number, optional): the mean of normal distribution. With float data type. Default: ``0``. std (number, optional): the std of normal distribution. With float data type. Default: ``1``. Keyword Args: generator (:class:`mindspore.Generator`, optional): a pseudorandom number generator. Default: ``None``, uses the default pseudorandom number generator. Returns: A tensor that is filled with random numbers that follow a normal distribution and that has the same type and shape as the `self` tensor. Raises: TypeError: If the dtype of `mean` or `std` is not one of: bool, int, float, complex. Supported Platforms: ``Ascend`` Examples: >>> import mindspore >>> import numpy as np >>> x = mindspore.Tensor(np.array([[1, 2], [3, 4]]), dtype=mindspore.float32) >>> output = x.normal_() >>> print(output) [[0.2788825 1.3305743] [1.244194 1.16303174]] """ return tensor_operator_registry.get('normal_')(self, mean=mean, std=std, generator=generator)
def _vm_compare(*args): """Implement `vm_compare` for tensor.""" if args: obj_str = args[-1] else: raise ValueError("_vm_compare does not receive any input.") if obj_str == "shape": fn = getattr(args[0].asnumpy(), obj_str) return fn if obj_str == "_tensor_setitem" or obj_str == "_tensor_setitem_origin": fn = getattr(args[0].asnumpy(), "__setitem__") index = args[1].asnumpy() if isinstance(args[1], Tensor) else args[1] value = args[2].asnumpy() if isinstance(args[2], Tensor) else args[2] fn(index, value) return args[0] if obj_str == "_tensor_getitem" or obj_str == "_tensor_getitem_origin": fn = getattr(args[0].asnumpy(), "__getitem__") index = args[1].asnumpy() if isinstance(args[1], Tensor) else args[1] return Tensor(np.array(fn(index))) if len(args) == 2: fn = getattr(args[0].asnumpy(), obj_str) return Tensor(fn()) if isinstance(args[0], Tensor): fn = getattr(args[0].asnumpy(), obj_str) y = args[1].asnumpy() if isinstance(args[1], Tensor) else args[1] else: obj_str = "__r" + obj_str[2:] fn = getattr(args[1].asnumpy(), obj_str) y = args[0] return Tensor(np.array(fn(y))) def _check_tensor_input(input_data=None, dtype=None, shape=None, init=None): """Check the tensor input.""" if input_data is not None and shape is not None: raise ValueError(f"When initializing a tensor with 'input_data', 'shape' should be set to None." f"But got shape: {shape}.") if init is not None and (shape is None or dtype is None): raise ValueError("init, dtype and shape must have values at the same time.") if input_data is not None: if isinstance(input_data, (tuple, list)): try: _ = np.array(input_data) except ValueError as e: if "The requested array has an inhomogeneous shape" in str(e): raise TypeError(f"For Tensor, the input_data is {input_data} that contain unsupported element.") raise def _check_tensor_dynamic_shape(dtype=None, shape=None, init=None): """Check if the tensor has dynamic shape.""" shape_list = list(shape) if len(shape_list) >= 1: shape_replaced_list = [-1 if i is None else i for i in shape_list] if isinstance(shape, tuple): shape = tuple(shape_replaced_list) if isinstance(shape, list): shape = shape_replaced_list if is_shape_unknown(shape) and (dtype is None or init is not None): raise ValueError("If setting dynamic shape, dtype must not be None, init must be None") return shape def _check_astype_and_convert(dtype): """Check whether dtype is a valid input, and convert to mstype""" all_types = mstype.__dtype__ + ["int", "float", "bool"] if isinstance(dtype, str): if dtype.lower() not in all_types: raise TypeError(f"For Tensor.astype, the string input type must be one of {all_types}, " f"but got '{dtype}'.") dtype = mstype.pytype_to_dtype(np.dtype(dtype.lower())) elif isinstance(dtype, type): dtype = mstype.pytype_to_dtype(dtype) elif dtype not in mstype.number_type + (mstype.bool_,): raise TypeError( f"For Tensor.astype, the input type must be one of {list(mstype.number_type + (mstype.bool_,) + np_types)}," f" but got '{dtype}'.") return dtype setattr(tensor_operator_registry, 'vm_compare', _vm_compare)