mindspore.Tensor.argmin_with_value
- Tensor.argmin_with_value(axis=0, keep_dims=False)[source]
Compute the max value of input Tensor on the specified axis, return the minimum value and index.
Note
In auto_parallel and semi_auto_parallel mode, the first output index can not be used.
If there are multiple minimum values, the index of the first minimum value is used.
The value range of axis is [-dims, dims - 1]. dims is the dimension length of this tensor.
- Parameters
- Returns
tuple (Tensor), tuple of 2 tensors, containing the corresponding index and the minimum value of the input tensor.
index (Tensor) - The index for the minimum value of the input tensor. If keep_dims is true, the shape of output tensors is \((x_1, x_2, ..., x_{axis-1}, 1, x_{axis+1}, ..., x_N)\). Otherwise, the shape is \((x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)\) .
value (Tensor) - The minimum value of input tensor, with the same shape as index.
- Raises
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32) >>> output, index = x.argmin_with_value() >>> print(output, index) 0.0 0 >>> output, index = x.argmin_with_value(keep_dims=True) >>> print(output, index) [0.0] [0]