文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

问题描述

请勾选同意隐私声明

mindspore.ops.BinaryCrossEntropy

class mindspore.ops.BinaryCrossEntropy(*args, **kwargs)[source]

Computes the binary cross entropy between the target and the output.

Sets input as x, input label as y, output as (x,y). Let,

L={l1,,lN},ln=wn[ynlogxn+(1yn)log(1xn)]

Then,

(x,y)={L,if reduction='none';mean(L),if reduction='mean';sum(L),if reduction='sum'.
Parameters

reduction (str) – Specifies the reduction to be applied to the output. Its value must be one of ‘none’, ‘mean’, ‘sum’. Default: ‘mean’.

Inputs:
  • input_x (Tensor) - The input Tensor. The data type must be float16 or float32.

  • input_y (Tensor) - The label Tensor which has same shape and data type as input_x.

  • weight (Tensor, optional) - A rescaling weight applied to the loss of each batch element. And it must have same shape and data type as input_x. Default: None.

Outputs:

Tensor or Scalar, if reduction is ‘none’, then output is a tensor and has the same shape as input_x. Otherwise, the output is a scalar.

Raises
  • TypeError – If dtype of input_x, input_y or weight (if given) is neither float16 not float32.

  • ValueError – If reduction is not one of ‘none’, ‘mean’, ‘sum’.

  • ValueError – If shape of input_y is not the same as input_x or weight (if given).

  • TypeError – If input_x, input_y or weight is not a Tensor.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore
>>> import mindspore.nn as nn
>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore.ops import operations as ops
>>> class Net(nn.Cell):
...     def __init__(self):
...         super(Net, self).__init__()
...         self.binary_cross_entropy = ops.BinaryCrossEntropy()
...     def construct(self, x, y, weight):
...         result = self.binary_cross_entropy(x, y, weight)
...         return result
...
>>> net = Net()
>>> input_x = Tensor(np.array([0.2, 0.7, 0.1]), mindspore.float32)
>>> input_y = Tensor(np.array([0., 1., 0.]), mindspore.float32)
>>> weight = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> output = net(input_x, input_y, weight)
>>> print(output)
0.38240486