mindspore.ops.BNTrainingReduce
- class mindspore.ops.BNTrainingReduce(*args, **kwargs)[source]
For the BatchNorm operation this operator update the moving averages for training and is used in conjunction with BNTrainingUpdate.
- Inputs:
x (Tensor) - A 4-D Tensor with float16 or float32 data type. Tensor of shape \((N, C, A, B)\).
- Outputs:
sum (Tensor) - A 1-D Tensor with float32 data type. Tensor of shape \((C,)\).
square_sum (Tensor) - A 1-D Tensor with float32 data type. Tensor of shape \((C,)\).
- Raises
- Supported Platforms:
Ascend
Examples
>>> input_x = Tensor(np.ones([128, 3, 32, 3]), mindspore.float32) >>> bn_training_reduce = ops.BNTrainingReduce() >>> output = bn_training_reduce(input_x) >>> print(output) (Tensor(shape=[3], dtype=Float32, value= [ 1.22880000e+04, 1.22880000e+04, 1.22880000e+04]), Tensor(shape=[3], dtype=Float32, value= [ 1.22880000e+04, 1.22880000e+04, 1.22880000e+04]))