文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.probability.dpn.ConditionalVAE

class mindspore.nn.probability.dpn.ConditionalVAE(encoder, decoder, hidden_size, latent_size, num_classes)[source]

Conditional Variational Auto-Encoder (CVAE).

The difference with VAE is that CVAE uses labels information. For more details, refer to Learning Structured Output Representation using Deep Conditional Generative Models.

Note

When encoder and decoder ard defined, the shape of the encoder’s output tensor and decoder’s input tensor must be (N,hidden_size). The latent_size must be less than or equal to the hidden_size.

Parameters
  • encoder (Cell) – The Deep Neural Network (DNN) model defined as encoder.

  • decoder (Cell) – The DNN model defined as decoder.

  • hidden_size (int) – The size of encoder’s output tensor.

  • latent_size (int) – The size of the latent space.

  • num_classes (int) – The number of classes.

Inputs:
  • input_x (Tensor) - The shape of input tensor is (N,C,H,W), which is the same as the input of encoder.

  • input_y (Tensor) - The tensor of the target data, the shape is (N,).

Outputs:
  • output (tuple) - (recon_x(Tensor), x(Tensor), mu(Tensor), std(Tensor)).

Supported Platforms:

Ascend GPU

construct(x, y)[source]

The input are x and y, so the WithLossCell method needs to be rewritten when using cvae interface.

generate_sample(sample_y, generate_nums, shape)[source]

Randomly sample from the latent space to generate samples.

Parameters
  • sample_y (Tensor) – Define the label of samples. Tensor of shape (generate_nums, ) and type mindspore.int32.

  • generate_nums (int) – The number of samples to generate.

  • shape (tuple) – The shape of sample, which must be the format of (generate_nums, C, H, W) or (-1, C, H, W).

Returns

Tensor, the generated samples.

reconstruct_sample(x, y)[source]

Reconstruct samples from original data.

Parameters
  • x (Tensor) – The input tensor to be reconstructed, the shape is (N, C, H, W).

  • y (Tensor) – The label of the input tensor, the shape is (N,).

Returns

Tensor, the reconstructed sample.