mindspore.dataset.config

The configuration module provides various functions to set and get the supported configuration parameters, and read a configuration file.

mindspore.dataset.config.get_auto_num_workers()

Get the setting (turned on or off) automatic number of workers.

Returns

bool, whether auto num worker feature is turned on.

Examples

>>> ds.config.get_auto_num_workers()
mindspore.dataset.config.get_callback_timeout()

Get the default timeout for DSWaitedCallback. In case of a deadlock, the wait function will exit after the timeout period.

Returns

int, the duration in seconds.

mindspore.dataset.config.get_monitor_sampling_interval()

Get the default interval of performance monitor sampling.

Returns

int, interval (in milliseconds) for performance monitor sampling.

mindspore.dataset.config.get_num_parallel_workers()

Get the default number of parallel workers. This is the DEFAULT num_parallel_workers value used for each op, it is not related to AutoNumWorker feature.

Returns

int, number of parallel workers to be used as a default for each operation.

mindspore.dataset.config.get_prefetch_size()

Get the prefetch size in number of rows.

Returns

int, total number of rows to be prefetched.

mindspore.dataset.config.get_seed()

Get the seed.

Returns

int, seed.

mindspore.dataset.config.load(file)

Load configurations from a file.

Parameters

file (str) – Path of the configuration file to be loaded.

Raises

RuntimeError – If file is invalid and parsing fails.

Examples

>>> import mindspore.dataset as ds
>>>
>>> # Set new default configuration values according to values in the configuration file.
>>> ds.config.load("path/to/config/file")
>>> # example config file:
>>> # {
>>> #     "logFilePath": "/tmp",
>>> #     "numParallelWorkers": 4,
>>> #     "seed": 5489,
>>> #     "monitorSamplingInterval": 30
>>> # }
mindspore.dataset.config.set_auto_num_workers(enable)

Set num_parallel_workers for each op automatically. (This feature is turned off by default) If turned on, the num_parallel_workers in each op will be adjusted automatically, possibly overwriting the num_parallel_workers passed in by user or the default value (if user doesn’t pass anything) set by ds.config.set_num_parallel_workers(). For now, this function is only optimized for Yolo3 dataset with per_batch_map (running map in batch). This feature aims to provide a baseline for optimized num_workers assignment for each op. Op whose num_parallel_workers is adjusted to a new value will be logged.

Parameters

enable (bool) – Whether to enable auto num_workers feature or not.

Raises

TypeError – If enable is not of boolean type.

Examples

>>> import mindspore.dataset as ds
>>>
>>> # Enable auto_num_worker feature, this might override the num_parallel_workers passed in by user
>>> ds.config.set_auto_num_workers(True)
mindspore.dataset.config.set_monitor_sampling_interval(interval)

Set the default interval (in milliseconds) for monitor sampling.

Parameters

interval (int) – Interval (in milliseconds) to be used for performance monitor sampling.

Raises

ValueError – If interval is invalid (<= 0 or > MAX_INT_32).

Examples

>>> import mindspore.dataset as ds
>>>
>>> # Set a new global configuration value for the monitor sampling interval.
>>> ds.config.set_monitor_sampling_interval(100)
mindspore.dataset.config.set_num_parallel_workers(num)

Set the default number of parallel workers.

Parameters

num (int) – Number of parallel workers to be used as a default for each operation.

Raises

ValueError – If num_parallel_workers is invalid (<= 0 or > MAX_INT_32).

Examples

>>> import mindspore.dataset as ds
>>>
>>> # Set a new global configuration value for the number of parallel workers.
>>> # Now parallel dataset operators will run with 8 workers.
>>> ds.config.set_num_parallel_workers(8)
mindspore.dataset.config.set_prefetch_size(size)

Set the number of rows to be prefetched.

Parameters

size (int) – Total number of rows to be prefetched.

Raises

ValueError – If prefetch_size is invalid (<= 0 or > MAX_INT_32).

Examples

>>> import mindspore.dataset as ds
>>>
>>> # Set a new global configuration value for the prefetch size.
>>> ds.config.set_prefetch_size(1000)
mindspore.dataset.config.set_seed(seed)

Set the seed to be used in any random generator. This is used to produce deterministic results.

Note

This set_seed function sets the seed in the Python random library and numpy.random library for deterministic Python augmentations using randomness. This set_seed function should be called with every iterator created to reset the random seed. In the pipeline, this does not guarantee deterministic results with num_parallel_workers > 1.

Parameters

seed (int) – Seed to be set.

Raises

ValueError – If seed is invalid (< 0 or > MAX_UINT_32).

Examples

>>> import mindspore.dataset as ds
>>>
>>> # Set a new global configuration value for the seed value.
>>> # Operations with randomness will use the seed value to generate random values.
>>> ds.config.set_seed(1000)