mindspore.dataset.WeightedRandomSampler
- class mindspore.dataset.WeightedRandomSampler(weights, num_samples=None, replacement=True)[source]
Samples the elements from [0, len(weights) - 1] randomly with the given weights (probabilities).
- Parameters
Examples
>>> import mindspore.dataset as ds >>> >>> dataset_dir = "path/to/imagefolder_directory" >>> >>> weights = [0.9, 0.01, 0.4, 0.8, 0.1, 0.1, 0.3] >>> >>> # creates a WeightedRandomSampler that will sample 4 elements without replacement >>> sampler = ds.WeightedRandomSampler(weights, 4) >>> data = ds.ImageFolderDataset(dataset_dir, num_parallel_workers=8, sampler=sampler)
- Raises
ValueError – If num_samples is not positive.
ValueError – If replacement is not boolean.
- get_num_samples()
All samplers can contain a numeric num_samples value (or it can be set to None). A child sampler can exist or be None. If a child sampler exists, then the child sampler count can be a numeric value or None. These conditions impact the resultant sampler count that is used. The following table shows the possible results from calling this function.
child sampler
num_samples
child_samples
result
T
x
y
min(x, y)
T
x
None
x
T
None
y
y
T
None
None
None
None
x
n/a
x
None
None
n/a
None
- Returns
int, the number of samples, or None