mindspore.dataset.SequentialSampler

class mindspore.dataset.SequentialSampler(start_index=None, num_samples=None)[source]

Samples the dataset elements sequentially, same as not having a sampler.

Parameters
  • start_index (int, optional) – Index to start sampling at. (dafault=None, start at first ID)

  • num_samples (int, optional) – Number of elements to sample (default=None, all elements).

Examples

>>> import mindspore.dataset as ds
>>>
>>> dataset_dir = "path/to/imagefolder_directory"
>>>
>>> # creates a SequentialSampler
>>> sampler = ds.SequentialSampler()
>>> data = ds.ImageFolderDataset(dataset_dir, num_parallel_workers=8, sampler=sampler)
get_num_samples()

All samplers can contain a numeric num_samples value (or it can be set to None). A child sampler can exist or be None. If a child sampler exists, then the child sampler count can be a numeric value or None. These conditions impact the resultant sampler count that is used. The following table shows the possible results from calling this function.

child sampler

num_samples

child_samples

result

T

x

y

min(x, y)

T

x

None

x

T

None

y

y

T

None

None

None

None

x

n/a

x

None

None

n/a

None

Returns

int, the number of samples, or None