mindspore.dataset.SequentialSampler
- class mindspore.dataset.SequentialSampler(start_index=None, num_samples=None)[source]
Samples the dataset elements sequentially, same as not having a sampler.
- Parameters
Examples
>>> import mindspore.dataset as ds >>> >>> dataset_dir = "path/to/imagefolder_directory" >>> >>> # creates a SequentialSampler >>> sampler = ds.SequentialSampler() >>> data = ds.ImageFolderDataset(dataset_dir, num_parallel_workers=8, sampler=sampler)
- get_num_samples()
All samplers can contain a numeric num_samples value (or it can be set to None). A child sampler can exist or be None. If a child sampler exists, then the child sampler count can be a numeric value or None. These conditions impact the resultant sampler count that is used. The following table shows the possible results from calling this function.
child sampler
num_samples
child_samples
result
T
x
y
min(x, y)
T
x
None
x
T
None
y
y
T
None
None
None
None
x
n/a
x
None
None
n/a
None
- Returns
int, the number of samples, or None