mindspore.dataset.vision.py_transforms.UniformAugment
- class mindspore.dataset.vision.py_transforms.UniformAugment(transforms, num_ops=2)[source]
Uniformly select and apply a number of transforms sequentially from a list of transforms. Randomly assign a probability to each transform for each image to decide whether to apply the transform or not.
All the transforms in transform list must have the same input/output data type.
- Parameters
Examples
>>> from mindspore.dataset.transforms.py_transforms import Compose >>> transforms = [py_vision.CenterCrop(64), ... py_vision.RandomColor(), ... py_vision.RandomSharpness(), ... py_vision.RandomRotation(30)] >>> transforms_list = Compose([py_vision.Decode(), ... py_vision.UniformAugment(transforms), ... py_vision.ToTensor()]) >>> # apply the transform to dataset through map function >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns="image")