mindspore.dataset.vision.py_transforms.ToTensor
- class mindspore.dataset.vision.py_transforms.ToTensor(output_type=<class numpy.float32>)[source]
Convert the input NumPy image array or PIL image of shape (H, W, C) to a NumPy ndarray of shape (C, H, W).
Note
The values in the input arrays are rescaled from [0, 255] to [0.0, 1.0]. The type is cast to output_type (default NumPy float32). The number of channels remains the same.
- Parameters
output_type (NumPy datatype, optional) – The datatype of the NumPy output (default=np.float32).
Examples
>>> from mindspore.dataset.transforms.py_transforms import Compose >>> # create a list of transformations to be applied to the "image" column of each data row >>> transforms_list = Compose([py_vision.Decode(), ... py_vision.RandomHorizontalFlip(0.5), ... py_vision.ToTensor()]) >>> # apply the transform to dataset through map function >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns="image")