Source code for mindspore_xai.explainer.perturb.lime

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""LIME Tabular explainer."""
import json
from io import IOBase

import numpy as np
from mindspore import Tensor
from mindspore.train._utils import check_value_type

from mindspore_xai.common.utils import is_notebook
from mindspore_xai.third_party.lime.lime.lime_tabular import LimeTabularExplainer


[docs]class LIMETabular: r""" Provides Lime Tabular explanation method. Explains predictions on tabular (i.e. matrix) data. For numerical features, perturb them by sampling from a Normal(0,1) and doing the inverse operation of mean-centering and scaling, according to the means and stds in the training data. For categorical features, perturb by sampling according to the training distribution, and making a binary feature that is 1 when the value is the same as the instance being explained. Args: predictor (Cell, Callable): The black-box model to be explained, should be a `Cell` object or function. For classification model, it accepts a 2D array/tensor of shape :math:`(N, K)` as input and outputs a 2D array/tensor of shape :math:`(N, L)`. For regression model, it accepts a 2D array/tensor of shape :math:`(N, K)` as input and outputs a 1D array/tensor of shape :math:`(N)`. train_feat_stats (dict): a dict object having the details of training data statistics. The stats can be generated using static method LIMETabular.to_feat_stats(training_data). feature_names (list, optional): list of names (strings) corresponding to the columns in the training data. Default: ``None``. categorical_features_indexes (list, optional): list of indices (ints) corresponding to the categorical columns, their values MUST be integers. Other columns will be considered continuous. Default: ``None``. class_names (list, optional): list of class names, ordered according to whatever the classifier is using. If not present, class names will be '0', '1', ... Default: ``None``. num_perturbs (int, optional): size of the neighborhood to learn the linear model. Default: ``5000``. max_features (int, optional): Maximum number of features present in explanation. Default: ``10``. Inputs: - **inputs** (Tensor, numpy.ndarray) - The input data to be explained, a 2D float tensor or 2D float numpy array of shape :math:`(N, K)`. - **targets** (Tensor, numpy.ndarray, list, int, optional) - The labels of interest to be explained. When `targets` is an integer, all the inputs will generate attribution map w.r.t this integer. When `targets` is a tensor, numpy array or list, it should be of shape :math:`(N, L)` (L being the number of labels for each sample), :math:`(N,)` or :math:`()`. For regression model, this parameter will be ignored. Default: ``0``. - **show** (bool, optional): Show the explanation figures, ``None`` means automatically show the explanation figures if it is running on JupyterLab. Default: ``None``. Outputs: list[list[list[(str, float)]]], a 3-dimension list of tuple. The first dimension represents inputs. The second dimension represents targets. The third dimension represents features. The tuple represents feature description and weight. Raises: TypeError: Be raised for any argument or input type problem. ValueError: Be raised for any input value problem. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import numpy as np >>> import mindspore as ms >>> import mindspore.nn as nn >>> from mindspore_xai.explainer import LIMETabular >>> # Linear classification model >>> class LinearNet(nn.Cell): ... def __init__(self, num_inputs, num_class): ... super(LinearNet, self).__init__() ... self.fc = nn.Dense(num_inputs, num_class, activation=nn.Softmax()) ... def construct(self, x): ... x = self.fc(x) ... return x >>> net = LinearNet(4, 3) >>> # use iris data as example >>> feature_names = ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] >>> class_names = ['setosa', 'versicolor', 'virginica'] >>> train = ms.Tensor(np.random.rand(10, 4), ms.float32) >>> stats = LIMETabular.to_feat_stats(train, feature_names=feature_names) >>> lime = LIMETabular(net, stats, feature_names=feature_names, class_names=class_names) >>> inputs = ms.Tensor(np.random.rand(2, 4), ms.float32) >>> targets = ms.Tensor([[1, 2], [1, 2]], ms.int32) >>> exps = lime(inputs, targets) >>> # output is a 3-dimension list of tuple >>> print((len(exps), len(exps[0]), len(exps[0][0]))) (2, 2, 4) """ def __init__(self, predictor, train_feat_stats, feature_names=None, categorical_features_indexes=None, class_names=None, num_perturbs=5000, max_features=10): if not callable(predictor): raise ValueError("predictor must be a Cell object or function.") check_value_type("train_feat_stats", train_feat_stats, dict) check_value_type("feature_names", feature_names, [list, type(None)]) check_value_type("categorical_features_indexes", categorical_features_indexes, [list, type(None)]) check_value_type("class_names", class_names, [list, type(None)]) check_value_type("num_perturbs", num_perturbs, int) check_value_type("max_features", max_features, int) num_features = len(train_feat_stats['feature_values'].keys()) # create dummy training_data training_data = np.zeros((1, num_features)) self._num_perturbs = num_perturbs self._max_features = max_features self._impl = LimeTabularExplainer(predictor, training_data, feature_names=feature_names, categorical_features=categorical_features_indexes, class_names=class_names, training_data_stats=train_feat_stats) def __call__(self, inputs, targets=0, show=None): check_value_type("inputs", inputs, [Tensor, np.ndarray]) check_value_type("targets", targets, [Tensor, np.ndarray, list, int]) check_value_type("show", show, [bool, type(None)]) if self._impl.mode == "regression": targets = 0 if show is None: show = is_notebook() if len(inputs.shape) != 2: raise ValueError('Dimension invalid. `inputs` should be 2D. ' 'But got {}D.'.format(len(inputs.shape))) targets = self._unify_targets(inputs, targets) exps = [] for sample_index, data in enumerate(inputs): if isinstance(data, Tensor): data = data.asnumpy() labels = targets[sample_index] class_exp = self._impl.explain_instance(data, labels, None, self._max_features, self._num_perturbs) sample_exp = [] for label in labels: sample_exp.append(class_exp.as_list(label)) if show: class_exp.show_in_notebook(sample_index, labels=[label]) exps.append(sample_exp) return exps
[docs] @staticmethod def to_feat_stats(features, feature_names=None, categorical_features_indexes=None): """ Convert features to feature stats. Args: features (Tensor, numpy.ndarray): training data. feature_names (list, optional): feature names. Default: ``None``. categorical_features_indexes (list, optional): list of indices (ints) corresponding to the categorical columns, their values MUST be integers. Other columns will be considered continuous. Default: ``None``. Returns: dict, training data stats """ check_value_type("feature_names", feature_names, [list, type(None)]) check_value_type("categorical_features_indexes", categorical_features_indexes, [list, type(None)]) # dummy model def func(array): return array if isinstance(features, Tensor): data = features.asnumpy() else: data = features explainer = LimeTabularExplainer(func, data, categorical_features=categorical_features_indexes, feature_names=feature_names) stats = { "means": explainer.discretizer.means, "mins": explainer.discretizer.mins, "maxs": explainer.discretizer.maxs, "stds": explainer.discretizer.stds, "feature_values": explainer.feature_values, "feature_frequencies": explainer.feature_frequencies, "bins": explainer.discretizer.bins_value } return stats
[docs] @staticmethod def save_feat_stats(stats, file): """ Save feature stats to disk. Args: stats (dict): training data stats. file (str, Path, IOBase): File path or stream. """ def convert_to_float(data): if isinstance(data, dict): new_data = {} for key, value in data.items(): new_data[int(key)] = [float(x) for x in value] else: new_data = [x.tolist() for x in data] return new_data stats_float = {k: convert_to_float(v) for k, v in stats.items()} if isinstance(file, IOBase): json.dump(stats_float, file) else: with open(file, 'w', encoding='utf-8') as file_handler: json.dump(stats_float, file_handler)
[docs] @staticmethod def load_feat_stats(file): """ Load feature stats from disk. Args: file (str, Path, IOBase): File path or stream. Returns: dict, training data stats """ def convert_to_numpy(data): if isinstance(data, dict): new_data = {} for key, value in data.items(): new_data[int(key)] = [np.float32(x) for x in value] else: new_data = [np.array(x, dtype=np.float32) for x in data] return new_data if isinstance(file, IOBase): stats_float = json.load(file) else: with open(file, 'r', encoding='utf-8') as file_handler: stats_float = json.load(file_handler) stats_numpy = {k: convert_to_numpy(v) for k, v in stats_float.items()} return stats_numpy
@staticmethod def _unify_targets(inputs, targets): """To unify targets to be 2D numpy.ndarray.""" if isinstance(targets, int): return np.array([[targets] for _ in inputs]).astype(int) if isinstance(targets, Tensor): if not targets.shape: return np.array([[targets.asnumpy()] for _ in inputs]).astype(int) if len(targets.shape) == 1: return np.array([[t.asnumpy()] for t in targets]).astype(int) if len(targets.shape) == 2: return np.array([t.asnumpy() for t in targets]).astype(int) if isinstance(targets, np.ndarray): if not targets.shape: return np.array([[targets] for _ in inputs]).astype(int) if len(targets.shape) == 1: return np.array([[t] for t in targets]).astype(int) return targets