Source code for mindspore_xai.explainer.perturb.lime
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""LIME Tabular explainer."""
import json
from io import IOBase
import numpy as np
from mindspore import Tensor
from mindspore.train._utils import check_value_type
from mindspore_xai.common.utils import is_notebook
from mindspore_xai.third_party.lime.lime.lime_tabular import LimeTabularExplainer
[docs]class LIMETabular:
r"""
Provides Lime Tabular explanation method.
Explains predictions on tabular (i.e. matrix) data. For numerical features, perturb them by sampling from a
Normal(0,1) and doing the inverse operation of mean-centering and scaling, according to the means and stds in the
training data. For categorical features, perturb by sampling according to the training distribution, and making a
binary feature that is 1 when the value is the same as the instance being explained.
Args:
predictor (Cell, Callable): The black-box model to be explained, should be a `Cell` object or function. For
classification model, it accepts a 2D array/tensor of shape :math:`(N, K)` as input and outputs a 2D
array/tensor of shape :math:`(N, L)`. For regression model, it accepts a 2D array/tensor of shape
:math:`(N, K)` as input and outputs a 1D array/tensor of shape :math:`(N)`.
train_feat_stats (dict): a dict object having the details of training data statistics. The stats can be
generated using static method LIMETabular.to_feat_stats(training_data).
feature_names (list, optional): list of names (strings) corresponding to the columns in the training data.
Default: ``None``.
categorical_features_indexes (list, optional): list of indices (ints) corresponding to the categorical columns,
their values MUST be integers. Other columns will be considered continuous. Default: ``None``.
class_names (list, optional): list of class names, ordered according to whatever the classifier is using. If
not present, class names will be '0', '1', ... Default: ``None``.
num_perturbs (int, optional): size of the neighborhood to learn the linear model. Default: ``5000``.
max_features (int, optional): Maximum number of features present in explanation. Default: ``10``.
Inputs:
- **inputs** (Tensor, numpy.ndarray) - The input data to be explained, a 2D float tensor or 2D float
numpy array of shape :math:`(N, K)`.
- **targets** (Tensor, numpy.ndarray, list, int, optional) - The labels of interest to be explained. When
`targets` is an integer, all the inputs will generate attribution map w.r.t this integer. When `targets` is a
tensor, numpy array or list, it should be of shape :math:`(N, L)` (L being the number of labels for each
sample), :math:`(N,)` or :math:`()`. For regression model, this parameter will be ignored. Default: ``0``.
- **show** (bool, optional): Show the explanation figures, ``None`` means automatically show the explanation
figures if it is running on JupyterLab. Default: ``None``.
Outputs:
list[list[list[(str, float)]]], a 3-dimension list of tuple. The first dimension represents inputs.
The second dimension represents targets. The third dimension represents features.
The tuple represents feature description and weight.
Raises:
TypeError: Be raised for any argument or input type problem.
ValueError: Be raised for any input value problem.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import numpy as np
>>> import mindspore as ms
>>> import mindspore.nn as nn
>>> from mindspore_xai.explainer import LIMETabular
>>> # Linear classification model
>>> class LinearNet(nn.Cell):
... def __init__(self, num_inputs, num_class):
... super(LinearNet, self).__init__()
... self.fc = nn.Dense(num_inputs, num_class, activation=nn.Softmax())
... def construct(self, x):
... x = self.fc(x)
... return x
>>> net = LinearNet(4, 3)
>>> # use iris data as example
>>> feature_names = ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
>>> class_names = ['setosa', 'versicolor', 'virginica']
>>> train = ms.Tensor(np.random.rand(10, 4), ms.float32)
>>> stats = LIMETabular.to_feat_stats(train, feature_names=feature_names)
>>> lime = LIMETabular(net, stats, feature_names=feature_names, class_names=class_names)
>>> inputs = ms.Tensor(np.random.rand(2, 4), ms.float32)
>>> targets = ms.Tensor([[1, 2], [1, 2]], ms.int32)
>>> exps = lime(inputs, targets)
>>> # output is a 3-dimension list of tuple
>>> print((len(exps), len(exps[0]), len(exps[0][0])))
(2, 2, 4)
"""
def __init__(self, predictor,
train_feat_stats,
feature_names=None,
categorical_features_indexes=None,
class_names=None,
num_perturbs=5000,
max_features=10):
if not callable(predictor):
raise ValueError("predictor must be a Cell object or function.")
check_value_type("train_feat_stats", train_feat_stats, dict)
check_value_type("feature_names", feature_names, [list, type(None)])
check_value_type("categorical_features_indexes", categorical_features_indexes, [list, type(None)])
check_value_type("class_names", class_names, [list, type(None)])
check_value_type("num_perturbs", num_perturbs, int)
check_value_type("max_features", max_features, int)
num_features = len(train_feat_stats['feature_values'].keys())
# create dummy training_data
training_data = np.zeros((1, num_features))
self._num_perturbs = num_perturbs
self._max_features = max_features
self._impl = LimeTabularExplainer(predictor,
training_data,
feature_names=feature_names,
categorical_features=categorical_features_indexes,
class_names=class_names,
training_data_stats=train_feat_stats)
def __call__(self,
inputs,
targets=0,
show=None):
check_value_type("inputs", inputs, [Tensor, np.ndarray])
check_value_type("targets", targets, [Tensor, np.ndarray, list, int])
check_value_type("show", show, [bool, type(None)])
if self._impl.mode == "regression":
targets = 0
if show is None:
show = is_notebook()
if len(inputs.shape) != 2:
raise ValueError('Dimension invalid. `inputs` should be 2D. '
'But got {}D.'.format(len(inputs.shape)))
targets = self._unify_targets(inputs, targets)
exps = []
for sample_index, data in enumerate(inputs):
if isinstance(data, Tensor):
data = data.asnumpy()
labels = targets[sample_index]
class_exp = self._impl.explain_instance(data, labels, None, self._max_features, self._num_perturbs)
sample_exp = []
for label in labels:
sample_exp.append(class_exp.as_list(label))
if show:
class_exp.show_in_notebook(sample_index, labels=[label])
exps.append(sample_exp)
return exps
[docs] @staticmethod
def to_feat_stats(features, feature_names=None, categorical_features_indexes=None):
"""
Convert features to feature stats.
Args:
features (Tensor, numpy.ndarray): training data.
feature_names (list, optional): feature names. Default: ``None``.
categorical_features_indexes (list, optional): list of indices (ints) corresponding to the categorical
columns, their values MUST be integers. Other columns will be considered continuous. Default: ``None``.
Returns:
dict, training data stats
"""
check_value_type("feature_names", feature_names, [list, type(None)])
check_value_type("categorical_features_indexes", categorical_features_indexes, [list, type(None)])
# dummy model
def func(array):
return array
if isinstance(features, Tensor):
data = features.asnumpy()
else:
data = features
explainer = LimeTabularExplainer(func, data, categorical_features=categorical_features_indexes,
feature_names=feature_names)
stats = {
"means": explainer.discretizer.means,
"mins": explainer.discretizer.mins,
"maxs": explainer.discretizer.maxs,
"stds": explainer.discretizer.stds,
"feature_values": explainer.feature_values,
"feature_frequencies": explainer.feature_frequencies,
"bins": explainer.discretizer.bins_value
}
return stats
[docs] @staticmethod
def save_feat_stats(stats, file):
"""
Save feature stats to disk.
Args:
stats (dict): training data stats.
file (str, Path, IOBase): File path or stream.
"""
def convert_to_float(data):
if isinstance(data, dict):
new_data = {}
for key, value in data.items():
new_data[int(key)] = [float(x) for x in value]
else:
new_data = [x.tolist() for x in data]
return new_data
stats_float = {k: convert_to_float(v) for k, v in stats.items()}
if isinstance(file, IOBase):
json.dump(stats_float, file)
else:
with open(file, 'w', encoding='utf-8') as file_handler:
json.dump(stats_float, file_handler)
[docs] @staticmethod
def load_feat_stats(file):
"""
Load feature stats from disk.
Args:
file (str, Path, IOBase): File path or stream.
Returns:
dict, training data stats
"""
def convert_to_numpy(data):
if isinstance(data, dict):
new_data = {}
for key, value in data.items():
new_data[int(key)] = [np.float32(x) for x in value]
else:
new_data = [np.array(x, dtype=np.float32) for x in data]
return new_data
if isinstance(file, IOBase):
stats_float = json.load(file)
else:
with open(file, 'r', encoding='utf-8') as file_handler:
stats_float = json.load(file_handler)
stats_numpy = {k: convert_to_numpy(v) for k, v in stats_float.items()}
return stats_numpy
@staticmethod
def _unify_targets(inputs, targets):
"""To unify targets to be 2D numpy.ndarray."""
if isinstance(targets, int):
return np.array([[targets] for _ in inputs]).astype(int)
if isinstance(targets, Tensor):
if not targets.shape:
return np.array([[targets.asnumpy()] for _ in inputs]).astype(int)
if len(targets.shape) == 1:
return np.array([[t.asnumpy()] for t in targets]).astype(int)
if len(targets.shape) == 2:
return np.array([t.asnumpy() for t in targets]).astype(int)
if isinstance(targets, np.ndarray):
if not targets.shape:
return np.array([[targets] for _ in inputs]).astype(int)
if len(targets.shape) == 1:
return np.array([[t] for t in targets]).astype(int)
return targets