mindspore_xai.visual
Computer vision data visualizations.
- mindspore_xai.visual.cv.normalize_saliency(saliency)[source]
Normalize the saliency map.
- Parameters
saliency (Tensor, np.ndarray) – Saliency map in shape of \((H, W)\).
- Returns
np.ndarray, the normalized saliency map in shape of \((H, W)\).
Examples
>>> import numpy as np >>> from mindspore_xai.visual.cv import normalize_saliency >>> >>> # prepare the saliency map >>> saliency_np = np.array([[0.4, 0.3, 0.1], [0.5, 0.9, 0.1]]) >>> output_img = normalize_saliency(saliency_np) >>> print(output_img.shape) (2, 3)
- mindspore_xai.visual.cv.saliency_to_image(saliency, original=None, cm=None, normalize=True, with_alpha=False)[source]
Convert the saliency map to a PIL.Image.Image object.
- Parameters
saliency (Tensor, np.ndarray) – Saliency map in shape of \((H, W)\).
original (PIL.Image.Image, optional) – The original image . Default:
None
.cm (Callable, optional) – Color map, viridis of matplotlib will be used if
None
is provided. Default:None
.normalize (bool, optional) – Normalize the input saliency map. Default:
True
.with_alpha (bool, optional) – Add alpha channel to the returned image. Default:
False
.
- Returns
PIL.Image.Image, the converted image object in size of \((H, W)\) with RGB or RGBA (if with_alpha is
True
) channels.
Examples
>>> import numpy as np >>> from PIL import Image >>> from mindspore_xai.visual.cv import saliency_to_image >>> >>> # prepare the original image >>> img_array = np.random.randint(255, size=(400, 400), dtype=np.uint8) >>> orig_img = Image.fromarray(img_array) >>> # prepare the saliency map >>> saliency_np = np.random.rand(400, 400) >>> output_img = saliency_to_image(saliency_np, orig_img) >>> print(output_img.size) (400, 400)
- mindspore_xai.visual.cv.saliency_to_rgba(saliency, cm=None, alpha_factor=1.2, as_uint8=True, normalize=True)[source]
Convert the saliency map to a RGBA numpy array.
- Parameters
saliency (Tensor, np.ndarray) – Saliency map in shape of \((H, W)\).
cm (Callable, optional) – Color map, viridis of matplotlib will be used if
None
is provided. Default:None
.alpha_factor (float, optional) – Alpha channel multiplier. Default:
1.2
.as_uint8 (bool, optional) – Return as with UINT8 data type. Default:
True
.normalize (bool, optional) – Normalize the input saliency map. Default:
True
.
- Returns
np.ndarray, the converted RGBA map in shape of \((H, W, 4)\) if cm was set to
None
.
Examples
>>> import numpy as np >>> from mindspore_xai.visual.cv import saliency_to_rgba >>> >>> # prepare the saliency map >>> saliency_np = np.array([[0.4, 0.3, 0.1], [0.5, 0.9, 0.1]]) >>> output_img = saliency_to_rgba(saliency_np) >>> print(output_img.shape) (2, 3, 4)