Optimizer
During model training, the optimizer is used to update network parameters. A proper optimizer can effectively reduce the training time and improve model performance.
The most basic optimizer is the stochastic gradient descent (SGD) algorithm. Many optimizers are improved based on the SGD to achieve the target function to converge to the global optimal point more quickly and effectively. The nn
module in MindSpore provides common optimizers, such as nn.SGD
, nn.Adam
, and nn.Momentum
. The following describes how to configure the optimizer provided by MindSpore and how to customize the optimizer.
For details about the optimizer provided by MindSpore, see Optimizer API.
nn.optim
Configuring the Optimizer
When using the optimizer provided by MindSpore, you need to specify the network parameter params
to be optimized, and then set other main parameters of the optimizer, such as learning_rate
and weight_decay
.
If you want to set options for different network parameters separately, for example, set different learning rates for convolutional and non-convolutional parameters, you can use the parameter grouping method to set the optimizer.
Parameter Configuration
When building an optimizer instance, you need to use the optimizer parameter params
to configure the weights to be trained and updated on the model network.
Parameter
contains a Boolean class attribute requires_grad
, which is used to indicate whether network parameters in the model need to be updated. The default value of requires_grad
of most network parameters is True, while the default value of requires_grad
of a few network parameters is False, for example, moving_mean
and moving_variance
in BatchNorm.
The trainable_params
method in MindSpore shields the attribute whose requires_grad
is False in Parameter
. When configuring the input parameter params
for the optimizer, you can use the net.trainable_params()
method to specify the network parameters to be optimized and updated.
import numpy as np
import mindspore
from mindspore import nn, ops
from mindspore import Tensor, Parameter
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(1, 6, 5, pad_mode="valid")
self.param = Parameter(Tensor(np.array([1.0], np.float32)), 'param')
def construct(self, x):
x = self.conv(x)
x = x * self.param
out = ops.matmul(x, x)
return out
net = Net()
# Parameters to be updated for the configuration optimizer
optim = nn.Adam(params=net.trainable_params())
print(net.trainable_params())
[Parameter (name=param, shape=(1,), dtype=Float32, requires_grad=True), Parameter (name=conv.weight, shape=(6, 1, 5, 5), dtype=Float32, requires_grad=True)]
You can manually change the default value of the requires_grad
attribute of Parameter
in the network weight to determine which parameters need to be updated.
As shown in the following example, use the net.get_parameters()
method to obtain all parameters on the network and manually change the requires_grad
attribute of the convolutional parameter to False. During the training, only non-convolutional parameters are updated.
conv_params = [param for param in net.get_parameters() if 'conv' in param.name]
for conv_param in conv_params:
conv_param.requires_grad = False
print(net.trainable_params())
optim = nn.Adam(params=net.trainable_params())
[Parameter (name=param, shape=(1,), dtype=Float32, requires_grad=True)]
Learning Rate
As a common hyperparameter in machine learning and deep learning, the learning rate has an important impact on whether the target function can converge to the local minimum value and when to converge to the minimum value. If the learning rate is too high, the target function may fluctuate greatly and it is difficult to converge to the optimal value. If the learning rate is too low, the convergence process takes a long time. In addition to setting a fixed learning rate, MindSpore also supports setting a dynamic learning rate. These methods can significantly improve the convergence efficiency on a deep learning network.
Fixed Learning Rate:
When a fixed learning rate is used, the learning_rate
input by the optimizer is a floating-point tensor or scalar tensor.
Take nn.Momentum
as an example. The fixed learning rate is 0.01. The following is an example:
# Set the learning rate to 0.01.
optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.01, momentum=0.9)
Dynamic Learning Rate:
mindspore.nn
provides the dynamic learning rate module, which is classified into the Dynamic LR function and LearningRateSchedule class. The Dynamic LR function pre-generates a learning rate list whose length is total_step
and transfers the list to the optimizer for use. During training, the value of the ith learning rate is used as the learning rate of the current step in step i
. The value of total_step
cannot be less than the total number of training steps. The LearningRateSchedule class transfers the instance to the optimizer, and the optimizer computes the current learning rate based on the current step.
Dynamic LR function
Currently, the Dynamic LR function can compute the learning rate (
nn.cosine_decay_lr
) based on the cosine decay function, the learning rate (nn.exponential_decay_lr
) based on the exponential decay function, the learning rate (nn.inverse_decay_lr
) based on the counterclockwise decay function, and the learning rate (nn.natural_exp_decay_lr
) based on the natural exponential decay function, the piecewise constant learning rate (nn.piecewise_constant_lr
), the learning rate (nn.polynomial_decay_lr
) based on the polynomial decay function, and the warm-up learning rate (nn.warmup_lr
).The following uses
nn.piecewise_constant_lr
as an example:milestone = [1, 3, 10] learning_rates = [0.1, 0.05, 0.01] lr = nn.piecewise_constant_lr(milestone, learning_rates) # Print the learning rate. print(lr) net = Net() # The optimizer sets the network parameters to be optimized and the piecewise constant learning rate. optim = nn.SGD(net.trainable_params(), learning_rate=lr)
[0.1, 0.05, 0.05, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]
LearningRateSchedule Class
Currently, the LearningRateSchedule class can compute the learning rate (
nn.CosineDecayLR
) based on the cosine decay function, the learning rate (nn.ExponentialDecayLR
) based on the exponential decay function, the learning rate (nn.InverseDecayLR
) based on the counterclockwise decay function, the learning rate (nn.NaturalExpDecayLR
) based on the natural exponential decay function, the learning rate (nn.PolynomialDecayLR
) based on the polynomial decay function, and warm-up learning rate (nn.WarmUpLR
).In the following example, the learning rate
nn.ExponentialDecayLR
is computed based on the exponential decay function.learning_rate = 0.1 # Initial value of the learning rate decay_rate = 0.9 # Decay rate decay_steps = 4 #Number of decay steps step_per_epoch = 2 exponential_decay_lr = nn.ExponentialDecayLR(learning_rate, decay_rate, decay_steps) for i in range(decay_steps): step = Tensor(i, mindspore.int32) result = exponential_decay_lr(step) print(f"step{i+1}, lr:{result}") net = Net() # The optimizer sets the learning rate and computes the learning rate based on the exponential decay function. optim = nn.Momentum(net.trainable_params(), learning_rate=exponential_decay_lr, momentum=0.9)
step1, lr:0.1 step2, lr:0.097400375 step3, lr:0.094868325 step4, lr:0.09240211
Weight Decay
Weight decay, also referred to as L2 regularization, is a method for mitigating overfitting of a deep neural network.
Generally, the value range of weight_decay
is \( [0,1) \), and the default value is 0.0, indicating that the weight decay policy is not used.
net = Net()
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.01,
momentum=0.9, weight_decay=0.9)
In addition, MindSpore supports dynamic weight decay. In this case, weight_decay
is a customized Cell. During training, the optimizer calls the instance of the Cell and transfers global_step
to compute the weight_decay
value of the current step. global_step
is an internally maintained variable. The value of global_step
increases by 1 each time a step is trained. The following is an example of exponential decay during training.
from mindspore.nn import Cell
from mindspore import ops, nn
import mindspore as ms
class ExponentialWeightDecay(Cell):
def __init__(self, weight_decay, decay_rate, decay_steps):
super(ExponentialWeightDecay, self).__init__()
self.weight_decay = weight_decay
self.decay_rate = decay_rate
self.decay_steps = decay_steps
def construct(self, global_step):
# The `construct` can have only one input. During training, the global step is automatically transferred for computation.
p = global_step / self.decay_steps
return self.weight_decay * ops.pow(self.decay_rate, p)
net = Net()
weight_decay = ExponentialWeightDecay(weight_decay=0.0001, decay_rate=0.1, decay_steps=10000)
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.01,
momentum=0.9, weight_decay=weight_decay)
Hyperparameter Grouping
The optimizer can also set options for different parameters separately. In this case, a dictionary list is transferred instead of variables. Each dictionary corresponds to a group of parameter values. Available keys in the dictionary include params
, lr
, weight_decay
, and grad_centralizaiton
, and value
indicates the corresponding value.
params
is mandatory, and other parameters are optional. If params
is not configured, the parameter values set when the optimizer is defined are used. During grouping, the learning rate can be a fixed learning rate or a dynamic learning rate, and weight_decay
can be a fixed value.
In the following example, different learning rates and weight decay parameters are set for convolutional and non-convolutional parameters.
net = Net()
# Convolutional parameter
conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
# Non-convolutional parameter
no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
# Fixed learning rate
fix_lr = 0.01
# Computation of Learning Rate Based on Polynomial Decay Function
polynomial_decay_lr = nn.PolynomialDecayLR(learning_rate=0.1, # Initial learning rate
end_learning_rate=0.01, # Final the learning rate
decay_steps=4, #Number of decay steps
power=0.5) # Polynomial power
# The convolutional parameter uses a fixed learning rate of 0.001, and the weight decay is 0.01.
# The non-convolutional parameter uses a dynamic learning rate, and the weight decay is 0.0.
group_params = [{'params': conv_params, 'weight_decay': 0.01, 'lr': fix_lr},
{'params': no_conv_params, 'lr': polynomial_decay_lr}]
optim = nn.Momentum(group_params, learning_rate=0.1, momentum=0.9, weight_decay=0.0)
Except a few optimizers (such as AdaFactor and FTRL), MindSpore supports grouping of learning rates. For details, see Optimizer API.
Customized Optimizer
In addition to the optimizers provided by MindSpore, you can customize optimizers.
When customizing an optimizer, you need to inherit the optimizer base class nn.Optimizer and rewrite the __init__
and construct
methods to set the parameter update policy.
The following example implements the customized optimizer Momentum (SGD algorithm with momentum):
\(grad\), \(lr\), \(p\), \(v\), and \(u\) respectively represent a gradient, a learning rate, a weight parameter, a momentum parameter, and an initial speed.
class Momentum(nn.Optimizer):
"""Define the optimizer."""
def __init__(self, params, learning_rate, momentum=0.9):
super(Momentum, self).__init__(learning_rate, params)
self.momentum = Parameter(Tensor(momentum, ms.float32), name="momentum")
self.moments = self.parameters.clone(prefix="moments", init="zeros")
def construct(self, gradients):
"""The input of construct is gradient. Gradients are automatically transferred during training."""
lr = self.get_lr()
params = self.parameters # Weight parameter to be updated
for i in range(len(params)):
# Update the moments value.
ops.assign(self.moments[i], self.moments[i] * self.momentum + gradients[i])
update = params[i] - self.moments[i] * lr # SGD algorithm with momentum
ops.assign(params[i], update)
return params
net = Net()
# Set the parameter to be optimized and the learning rate of the optimizer to 0.01.
opt = Momentum(net.trainable_params(), 0.01)
mindspore.ops
also encapsulates optimizer operators for users to define optimizers, such as ops.ApplyCenteredRMSProp
, ops.ApplyMomentum
, and ops.ApplyRMSProp
. The following example uses the ApplyMomentum
operator to customize the optimizer Momentum:
class Momentum(nn.Optimizer):
"""Define the optimizer."""
def __init__(self, params, learning_rate, momentum=0.9):
super(Momentum, self).__init__(learning_rate, params)
self.moments = self.parameters.clone(prefix="moments", init="zeros")
self.momentum = momentum
self.opt = ops.ApplyMomentum()
def construct(self, gradients):
# Weight parameter to be updated
params = self.parameters
success = None
for param, mom, grad in zip(params, self.moments, gradients):
success = self.opt(param, mom, self.learning_rate, grad, self.momentum)
return success
net = Net()
# Set the parameter to be optimized and the learning rate of the optimizer to 0.01.
opt = Momentum(net.trainable_params(), 0.01)
experimental.optim
In addition to the optimizer within the mindspore.nn.optim
module mentioned above, MindSpore also provides an experimental optimizer module, mindspore.experimental.optim
, which is designed to extend the function of the optimizer.
The
mindspore.experimental.optim
module is still under development. Currently the optimizer for this module is only available for functional programming scenarios and only adapts to the dynamic learning rate class under mindspore.experimental.optim.lr_scheduler.
Usage differences:
Parameters |
nn.optim |
experimental.optim |
Functions |
---|---|---|---|
Parameter configuration (hyperparameter not grouped) |
Configure input to be |
Configure input to be |
The configuration and function is the same in normal scenarios, and passing in |
Learning rate |
Configure input to be |
Configure input to be |
For configuration and function difference for dynamic learning rate scenarios, see Dynamic Learning Rate for details |
Weight decay |
Configure input to be |
Configure input to be |
For different dynamic weight_decay scenarios configuration, see weight_decay for details. |
Hyperparameter grouping |
Configure input to be |
Configure input to be |
In the grouping scenario, i.e., when |
In addition to the above similarities and differences, mindspore.experimental.optim
also supports Viewing Parameter Groups, Modifying Optimizer Parameters during Running, and other features, as detailed below.
Configuring Optimizer
Parameter Configuration
In normal scenarios, the parameters are configured in the same way as for mindspore.nn.optim
, passing in net.trainable_params
.
Learning Rate
Fixed Learning Rate:
Configured in the same way as the fixed learning rates of mindspore.nn.optim
.
Dynamic Learning Rate:
The dynamic learning rate module is provided under mindspore.experimental.optim.lr_scheduler
for use with mindspore.experimental.optim
and the usage way is different from that of mindspore.nn.optim
:
mindspore.nn.optim
: Pass a list or instance of dynamic learning rates to the optimizer input learning_rate
, as used in DynamicLR function and LearningRateSchedule class.
mindspore.experimental.optim
: Pass the optimizer instance to the input optimizer
of the dynamic learning rate class, as used in LRScheduler class.
Using LRScheduler
to obtain the learning rate:
get_lr
. Taking StepLR
as an example, the learning rate can be obtained manually using scheduler.get_lr()
directly during the training process.
from mindspore.experimental import optim
net = Net()
optimizer = optim.Adam(net.trainable_params(), lr=0.1)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
print(scheduler.get_last_lr())
[Tensor(shape=[], dtype=Float32, value= 0.1)]
Weight Decay
mindspore.nn.optim
: weight_decay
supports int and float types, and also supports Cell type for dynamic weight_decay scenarios.
mindspore.experimental.optim
: weight_decay
data type only supports for int and float types, but the user is supported to manually modify the value of weight_decay in PyNative mode.
Hyperparameter Grouping
mindspore.nn.optim
: Specific key groupings are supported: “params”, “lr”, “weight_decay” and “grad_centralizaiton”, see above for details on how to use them.
mindspore.experimental.optim
: Supports all optimizer parameter groupings.
Code Example:
conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
no_conv_params = list(
filter(lambda x: 'conv' not in x.name, net.trainable_params()))
group_params = [
{'params': conv_params, 'weight_decay': 0.01, 'lr': 0.9, "amsgrad": True},
{'params': no_conv_params, 'lr': 0.66, "eps": 1e-6, "betas": (0.8, 0.88)}]
optimizer = optim.Adam(params=group_params, lr=0.01)
Viewing Optimizer Configuration
Use the param_group
attribute to view parameter groups:
Code Example:
print(optimizer.param_groups)
[{'params': [Parameter (name=conv.weight, shape=(6, 1, 5, 5), dtype=Float32, requires_grad=True)], 'weight_decay': 0.01, 'lr': Parameter (name=learning_rate_group_0, shape=(), dtype=Float32, requires_grad=True), 'amsgrad': True, 'betas': (0.9, 0.999), 'eps': 1e-08, 'maximize': False}, {'params': [Parameter (name=param, shape=(1,), dtype=Float32, requires_grad=True)], 'lr': Parameter (name=learning_rate_group_1, shape=(), dtype=Float32, requires_grad=True), 'eps': 1e-06, 'betas': (0.8, 0.88), 'weight_decay': 0.0, 'amsgrad': False, 'maximize': False}]
As you can see from the above output, the learning rate in the optimizer parameter group is Parameter
. Parameter
in mindspore does not display the parameter value natively, and you can view the parameter value by using .value()
. It can use get_last_lr
of Dynamic Learning Rate Module mindspore.experimental.optim.lr_scheduler.LRScheduler
as described above.
print(optimizer.param_groups[1]["lr"].value())
0.66
Printing Optimizer Instances Directly to View Parameter Groups:
print(optimizer)
Adam (
Parameter Group 0
amsgrad: True
betas: (0.9, 0.999)
eps: 1e-08
lr: 0.9
maximize: False
weight_decay: 0.01
Parameter Group 1
amsgrad: False
betas: (0.8, 0.88)
eps: 1e-06
lr: 0.66
maximize: False
weight_decay: 0.0
)
Modifying Optimizer Parameters during Running
Modifying Learning Rate during Running
The learning rate in mindspore.experimental.optim.Optimizer
is Parameter
, in addition to the dynamic modification of the learning rate through the dynamic learning rate module mindspore.experimental.optim.lr_scheduler
as described above, the modification of the learning rate using the assign
assignment is also supported.
For example, in the sample below, in the training step, set the learning rate of 1st parameter group in the optimizer to be adjusted to 0.01 if the change in the loss value compared to the previous step is less than 0.1:
net = Net()
loss_fn = nn.MAELoss()
optimizer = optim.Adam(net.trainable_params(), lr=0.1)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)
last_step_loss = 0.1
def forward_fn(data, label):
logits = net(data)
loss = loss_fn(logits, label)
return loss
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
def train_step(data, label):
(loss, _), grads = grad_fn(data, label)
optimizer(grads)
if ops.abs(loss - last_step_loss) < 0.1:
ops.assign(optimizer.param_groups[1]["lr"], Tensor(0.01))
return loss
Modifying Optimizer Parameters other than lr during Running
Currently, only PyNative mode supports modifying other optimizer parameters during running, and modifications in Graph mode will not take effect or report errors.
In the following sample, in the training step, set the weight_decay
of 1st parameter group in the optimizer to be adjusted to 0.02 if the change in the loss value compared to the previous step is less than 0.1:
net = Net()
loss_fn = nn.MAELoss()
optimizer = optim.Adam(net.trainable_params(), lr=0.1)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)
last_step_loss = 0.1
def forward_fn(data, label):
logits = net(data)
loss = loss_fn(logits, label)
return loss
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
def train_step(data, label):
(loss, _), grads = grad_fn(data, label)
optimizer(grads)
if ops.abs(loss - last_step_loss) < 0.1:
optimizer.param_groups[1]["weight_decay"] = 0.02
return loss
Customized Optimizer
In the same way as the Customized Optimizer above, a custom optimizer can also inherit from the optimizer base class experimental.optim.Optimizer and override the __init__
method and construct
method to set your own parameter update strategy.