Loading Text Dataset
Linux
Ascend
GPU
CPU
Data Preparation
Beginner
Intermediate
Expert
Overview
The mindspore.dataset
module provided by MindSpore enables users to customize their data fetching strategy from disk. At the same time, data processing and tokenization operators are applied to the data. Pipelined data processing produces a continuous flow of data to the training network, improving overall performance.
In addition, MindSpore supports data loading in distributed scenarios. Users can define the number of shards while loading. For more details, see Loading the Dataset in Data Parallel Mode.
This tutorial briefly demonstrates how to load and process text data using MindSpore.
Preparations
Prepare the following text data.
Welcome to Beijing! 北京欢迎您! 我喜欢English!
Create the
tokenizer.txt
file, copy the text data to the file, and save the file under./test
directory. The directory structure is as follow.└─test └─tokenizer.txt
Import the
mindspore.dataset
andmindspore.dataset.text
modules.import mindspore.dataset as ds import mindspore.dataset.text as text
Loading Dataset
MindSpore supports loading common datasets in the field of text processing that come in a variety of on-disk formats. Users can also implement custom dataset class to load customized data.
The following tutorial demonstrates loading datasets using the TextFileDataset
in the mindspore.dataset
module.
Configure the dataset directory as follows and create a dataset object.
DATA_FILE = "./test/tokenizer.txt" dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
Create an iterator then obtain data through the iterator.
for data in dataset.create_dict_iterator(output_numpy=True): print(text.to_str(data['text']))
The output without tokenization:
Welcome to Beijing! 北京欢迎您! 我喜欢English!
Processing Data
The following tutorial demonstrates how to construct a pipeline and perform operations such as shuffle
and RegexReplace
on the text dataset.
Shuffle the dataset.
ds.config.set_seed(58) dataset = dataset.shuffle(buffer_size=3) for data in dataset.create_dict_iterator(output_numpy=True): print(text.to_str(data['text']))
The output is as follows:
我喜欢English! Welcome to Beijing! 北京欢迎您!
Perform
RegexReplace
on the dataset.replace_op1 = text.RegexReplace("Beijing", "Shanghai") replace_op2 = text.RegexReplace("北京", "上海") dataset = dataset.map(operations=[replace_op1, replace_op2]) for data in dataset.create_dict_iterator(output_numpy=True): print(text.to_str(data['text']))
The output is as follows:
我喜欢English! Welcome to Shanghai! 上海欢迎您!
Tokenization
The following tutorial demonstrates how to use the WhitespaceTokenizer
to tokenize words with space.
Create a
tokenizer
.tokenizer = text.WhitespaceTokenizer()
Apply the
tokenizer
.dataset = dataset.map(operations=tokenizer)
Create an iterator and obtain data through the iterator.
for data in dataset.create_dict_iterator(output_numpy=True): print(text.to_str(data['text']).tolist())
The output after tokenization is as follows:
['我喜欢English!'] ['Welcome', 'to', 'Shanghai!'] ['上海欢迎您!']