Migrating From Third Party Frameworks With Tools
Linux
Ascend
Model Development
Beginner
Overview
MindConverter is a migration tool to transform the model scripts from PyTorch or TensorFlow to MindSpore. Users can migrate their PyTorch or TensorFlow models to MindSpore rapidly with minor changes according to the conversion report.
Installation
Mindconverter is a submodule in MindInsight. Please follow the Guide here to install MindInsight.
Usage
MindConverter currently only provides command-line interface. Here is the manual page.
usage: mindconverter [-h] [--version] [--in_file IN_FILE]
[--model_file MODEL_FILE] [--shape SHAPE]
[--input_nodes INPUT_NODES] [--output_nodes OUTPUT_NODES]
[--output OUTPUT] [--report REPORT]
[--project_path PROJECT_PATH]
optional arguments:
-h, --help show this help message and exit
--version show program version number and exit
--in_file IN_FILE Specify path for script file to use AST schema to do
script conversation.
--model_file MODEL_FILE
PyTorch .pth or TensorFlow .pb model file path to use
graph based schema to do script generation. When
`--in_file` and `--model_file` are both provided, use
AST schema as default.
--shape SHAPE Optional, expected input tensor shape of
`--model_file`. It is required when use graph based
schema. Usage: --shape 1,3,244,244
--input_nodes INPUT_NODES
Optional, input node(s) name of `--model_file`. It is
required when use TensorFlow model. Usage:
--input_nodes input_1:0,input_2:0
--output_nodes OUTPUT_NODES
Optional, output node(s) name of `--model_file`. It is
required when use TensorFlow model. Usage:
--output_nodes output_1:0,output_2:0
--output OUTPUT Optional, specify path for converted script file
directory. Default output directory is `output` folder
in the current working directory.
--report REPORT Optional, specify report directory. Default is
converted script directory.
--project_path PROJECT_PATH
Optional, PyTorch scripts project path. If PyTorch
project is not in PYTHONPATH, please assign
`--project_path` when use graph based schema. Usage:
--project_path ~/script_file/
PyTorch Model Scripts Migration
MindConverter provides two modes for PyTorch:
Abstract Syntax Tree (AST) based conversion: Use the argument
--in_file
will enable the AST mode.Computational Graph based conversion: Use
--model_file
and--shape
arguments will enable the Graph mode.
The AST mode will be enabled, if both
--in_file
and--model_file
are specified.
For the Graph mode, --shape
is mandatory.
For the AST mode, --shape
is ignored.
--output
and --report
is optional. MindConverter creates an output
folder under the current working directory, and outputs generated scripts and conversion reports to it.
Please note that your original PyTorch project is included in the module search path (PYTHONPATH). Use the python interpreter and test your module can be successfully loaded by import
command. Use --project_path
instead if your project is not in the PYTHONPATH to ensure MindConverter can load it.
Assume the project is located at
/home/user/project/model_training
, users can use this command to add the project toPYTHONPATH
:export PYTHONPATH=/home/user/project/model_training:$PYTHONPATH
MindConverter needs the original PyTorch scripts because of the reverse serialization.
TensorFlow Model Scripts Migration
MindConverter provides computational graph based conversion for TensorFlow: Transformation will be done given --model_file
, --shape
, --input_nodes
and --output_nodes
.
AST mode is not supported for TensorFlow, only computational graph based mode is available.
Scenario
MindConverter provides two modes for different migration demands.
Keep original scripts’ structures, including variables, functions, and libraries.
Keep extra modifications as few as possible, or no modifications are required after conversion.
The AST mode is recommended for the first demand (AST mode is only supported for PyTorch). It parses and analyzes PyTorch scripts, then replace them with the MindSpore AST to generate codes. Theoretically, The AST mode supports any model script. However, the conversion may differ due to the coding style of original scripts.
For the second demand, the Graph mode is recommended. As the computational graph is a standard descriptive language, it is not affected by user’s coding style. This mode may have more operators converted as long as these operators are supported by MindConverter.
Some typical networks in computer vision field have been tested for the Graph mode. Note that:
Currently, the Graph mode does not support models with multiple inputs. Only models with a single input and single output are supported.
The Dropout operator will be lost after conversion because the inference mode is used to load the PyTorch or TensorFlow model. Manually re-implement is necessary.
The Graph-based mode will be continuously developed and optimized with further updates.
Example
AST-Based Conversion
Assume the PyTorch script is located at /home/user/model.py
, and outputs the transformed MindSpore script to /home/user/output
, with the conversion report to /home/user/output/report
. Use the following command:
mindconverter --in_file /home/user/model.py \
--output /home/user/output \
--report /home/user/output/report
In the conversion report, non-transformed code is listed as follows:
line <row>:<col> [UnConvert] 'operator' didn't convert. ...
For non-transformed operators, the original code keeps. Please manually migrate them. Click here for more information about operator mapping.
Here is an example of the conversion report:
[Start Convert]
[Insert] 'import mindspore.ops.operations as P' is inserted to the converted file.
line 1:0: [Convert] 'import torch' is converted to 'import mindspore'.
...
line 157:23: [UnConvert] 'nn.AdaptiveAvgPool2d' didn't convert. Maybe could convert to mindspore.ops.operations.ReduceMean.
...
[Convert Over]
For non-transformed operators, suggestions are provided in the report. For instance, MindConverter suggests that replace torch.nn.AdaptiveAvgPool2d
with mindspore.ops.operations.ReduceMean
.
Graph-Based Conversion
PyTorch Model Scripts Conversion
Assume the PyTorch model (.pth file) is located at /home/user/model.pth
, with input shape (1, 3, 224, 224) and the original PyTorch script is at /home/user/project/model_training
. Output the transformed MindSpore script to /home/user/output
, with the conversion report to /home/user/output/report
. Use the following command:
mindconverter --model_file /home/user/model.pth --shape 1,3,224,224 \
--output /home/user/output \
--report /home/user/output/report \
--project_path /home/user/project/model_training
The Graph mode has the same conversion report as the AST mode. However, the line number and column number refer to the transformed scripts since no original scripts are used in the process.
In addition, input and output Tensor shape of unconverted operators shows explicitly (input_shape
and output_shape
) as comments in converted scripts to help further manual modifications. Here is an example of the Reshape
operator (already supported after R1.0 version):
class Classifier(nn.Cell):
def __init__(self):
super(Classifier, self).__init__()
...
self.reshape = onnx.Reshape(input_shape=(1, 1280, 1, 1),
output_shape=(1, 1280))
...
def construct(self, x):
...
# Suppose input of `reshape` is x.
reshape_output = self.reshape(x)
...
It is convenient to replace the operators according to the input_shape
and output_shape
parameters. The replacement is like this:
import mindspore.ops as ops
...
class Classifier(nn.Cell):
def __init__(self):
super(Classifier, self).__init__()
...
self.reshape = ops.Reshape(input_shape=(1, 1280, 1, 1),
output_shape=(1, 1280))
...
def construct(self, x):
...
# Suppose input of `reshape` is x.
reshape_output = self.reshape(x, (1, 1280))
...
--output
and--report
are optional. MindConverter creates anoutput
folder under the current working directory, and outputs generated scripts and conversion reports to it.
TensorFlow Model Scripts Conversion
To use TensorFlow model script migration, you need to export TensorFlow model to Pb format(frozen graph) first, and obtain the model input node and output node name. See MindConverter tutorial for the pb model exporting.
Suppose the model is saved to /home/user/xxx/frozen_model.pb
, corresponding input node name is input_1:0
, output node name is predictions/Softmax:0
, the input shape of model is 1,224,224,3
, the following command can be used to generate the script:
mindconverter --model_file /home/user/xxx/frozen_model.pb --shape 1,224,224,3 \
--input_nodes input_1:0 \
--output_nodes predictions/Softmax:0 \
--output /home/user/output \
--report /home/user/output/report
After executed MindSpore script, and report file can be found in corresponding directory.
The format of conversion report generated by script generation scheme based on graph structure is the same as that of AST scheme. However, since the graph based scheme is a generative method, the original pytorch script is not referenced in the conversion process. Therefore, the code line and column numbers involved in the generated conversion report refer to the generated script.
In addition, for operators that are not converted successfully, the input and output shape of tensor of the node will be identified in the code by input_shape
and output_shape
. For example, please refer to the example in PyTorch Model Scripts Conversion section.
Caution
PyTorch, TensorFlow, TF2ONNX(>=1.7.1), ONNX(>=1.8.0), ONNXRUNTIME(>=1.5.2) are not an explicitly stated dependency libraries in MindInsight. The Graph conversion requires the consistent PyTorch or TensorFlow version as the model is trained. (MindConverter recommends PyTorch 1.4.0 or 1.6.0 and TensorFlow 1.15.x)
This script conversion tool relies on operators which supported by MindConverter and MindSpore. Unsupported operators may not be successfully mapped to MindSpore operators. You can manually edit, or implement the mapping based on MindConverter, and contribute to our MindInsight repository. We appreciate your support for the MindSpore community.
MindConverter can only guarantee that the converted model scripts require a minor revision or no revision when the inputs’ shape fed to the generated model script are equal to the value of
--shape
(The batch size dimension is not limited).