mindspore_rl.utils.soft_update 源代码

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Soft Update.
"""

import mindspore
from mindspore import nn
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter, ParameterTuple
from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.ops import operations as P


[文档]class SoftUpdate(nn.Cell): r""" Update target network parameters with moving average algorithm. Set target network parameter as :math:`target\_param`, behavior network parameter as :math:`behavior\_param`, moving averaget factor as :math:`factor`. Then :math:`target\_param = (1. - factor) * behavior\_param + factor * target\_param`. Args: factor (float): moving average factor between [0, 1]. update_interval (int): The target network parameters will be updated every `update_interval` steps. behavior_params(list(Parameter)): list of behavior network parameters. target_params(list(Parameter)): list of target network parameters. Examples: >>> import numpy as np >>> import mindspore.nn as nn >>> from mindspore.common.parameter import ParameterTuple >>> from mindspore_rl.utils import SoftUpdate >>> class Net(nn.Cell): >>> def __init__(self): >>> super().__init__() >>> self.behavior_params = ParameterTuple(nn.Dense(10, 20).trainable_params()) >>> self.target_params = ParameterTuple(nn.Dense(10, 20).trainable_params()) >>> self.updater = SoftUpdate(0.9, 2, self.behavior_params, self.target_params) >>> def construct(self): >>> return self.updater() >>> net = Net() >>> for _ in range(10): >>> net() >>> np.allclose(net.behavior_params[0].asnumpy(), net.target_params[0].asnumpy(), atol=1e-5) True """ def __init__(self, factor, update_interval, behavior_params, target_params): super().__init__() self.factor = factor self.update_interval = update_interval self.behavior_params = ParameterTuple(behavior_params) self.target_params = ParameterTuple(target_params) self.mod = P.Mod() self.assign = P.Assign() self.hyper_map = C.HyperMap() self.steps = Parameter( initializer(0, [1], mindspore.int32), name="steps", requires_grad=False ) def _update(self, factor, behavior_param, target_param): new_param = (1.0 - factor) * target_param + factor * behavior_param self.assign(target_param, new_param) return target_param def construct(self): if self.update_interval == 1: updater = F.partial(self._update, self.factor) self.hyper_map(updater, self.behavior_params, self.target_params) else: if not self.mod(self.steps, self.update_interval): updater = F.partial(self._update, self.factor) self.hyper_map(updater, self.behavior_params, self.target_params) self.steps += 1 return self.steps