sponge.control.thermostat.thermostat 源代码

# Copyright 2021-2023 @ Shenzhen Bay Laboratory &
#                       Peking University &
#                       Huawei Technologies Co., Ltd
#
# This code is a part of MindSPONGE:
# MindSpore Simulation Package tOwards Next Generation molecular modelling.
#
# MindSPONGE is open-source software based on the AI-framework:
# MindSpore (https://www.mindspore.cn/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Thermostat
"""

from typing import Union, Tuple, List
from numpy import ndarray

from mindspore import Tensor, Parameter
from mindspore.ops import functional as F

from .. import Controller
from ...system import Molecule
from ...function import get_arguments

_THERMOSTAT_BY_KEY = dict()


def _thermostat_register(*aliases):
    """Return the alias register."""
    def alias_reg(cls):
        name = cls.__name__
        name = name.lower()
        if name not in _THERMOSTAT_BY_KEY:
            _THERMOSTAT_BY_KEY[name] = cls

        for alias in aliases:
            if alias not in _THERMOSTAT_BY_KEY:
                _THERMOSTAT_BY_KEY[alias] = cls

        return cls

    return alias_reg


[文档]class Thermostat(Controller): r""" Base class for thermostat module in MindSPONGE, which is a subclass of :class:`sponge.control.Controller`. The :class:`sponge.control.thermostat.Thermostat` module is used for temperature coupling. It controls the atomic velocities and the kinetics of the system during the simulation process. Args: system ( :class:`sponge.system.Molecule`): Simulation system. temperature (Union[float, ndarray, Tensor], optional): Reference temperature :math:`T_{ref}` in unit Kelvin for temperature coupling. Default: ``300.0``. control_step (int, optional): Step interval for controller execution. Default: ``1``. time_constant (float, optional): Time constant :math:`\tau_T` in unit picosecond for temperature coupling. Default: ``0.5``. Inputs: - **coordinate** (Tensor) - Coordinate. Tensor of shape :math:`(B, A, D)`. Data type is float. Here :math:`B` is the number of walkers in simulation, :math:`A` is the number of atoms and :math:`D` is the spatial dimension of the simulation system, which is usually 3. - **velocity** (Tensor) - Velocity. Tensor of shape :math:`(B, A, D)`. Data type is float. - **force** (Tensor) - Force. Tensor of shape :math:`(B, A, D)`. Data type is float. - **energy** (Tensor) - Energy. Tensor of shape :math:`(B, 1)`. Data type is float. - **kinetics** (Tensor) - Kinetics. Tensor of shape :math:`(B, D)`. Data type is float. - **virial** (Tensor) - Virial. Tensor of shape :math:`(B, D)`. Data type is float. - **pbc_box** (Tensor) - Pressure boundary condition box. Tensor of shape :math:`(B, D)`. Data type is float. - **step** (int) - Simulation step. Default: ``0``. Outputs: - coordinate, Tensor of shape :math:`(B, A, D)`. Coordinate. Data type is float. - velocity, Tensor of shape :math:`(B, A, D)`. Velocity. Data type is float. - force, Tensor of shape :math:`(B, A, D)`. Force. Data type is float. - energy, Tensor of shape :math:`(B, 1)`. Energy. Data type is float. - kinetics, Tensor of shape :math:`(B, D)`. Kinetics. Data type is float. - virial, Tensor of shape :math:`(B, D)`. Virial. Data type is float. - pbc_box, Tensor of shape :math:`(B, D)`. Periodic boundary condition box. Data type is float. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> from sponge import Molecule >>> from sponge.control import Thermostat >>> system = Molecule(template='water.tip3p.yaml') >>> controller = Thermostat(system) """ def __init__(self, system: Molecule, temperature: Union[float, ndarray, Tensor, List[float]] = 300, control_step: int = 1, time_constant: float = 0.5, **kwargs, ): super().__init__( system=system, control_step=control_step, ) self._kwargs = get_arguments(locals(), kwargs) temperature = self._get_mw_tensor(temperature, 'temperature') self.ref_temp = Parameter(temperature, name='ref_temp', requires_grad=False) # \tau_t self.time_constant = self._get_mw_tensor(time_constant, 'time_constant') @property def temperature(self) -> Tensor: r""" Reference temperature. Returns: Tensor, reference temperature. """ return self.identity(self.ref_temp) @property def ref_kinetics(self) -> Tensor: r""" Reference kinetics. Returns: Tensor, reference kinetics. """ return self.get_ref_kinetics()
[文档] def get_ref_kinetics(self) -> Tensor: r""" Get reference kinetics. Returns: Tensor, reference kinetics. """ return 0.5 * self.degrees_of_freedom * self.boltzmann * self.ref_temp
[文档] def set_temperature(self, temperature: Union[float, ndarray, Tensor, List[float]]) -> Tensor: r""" Set the value of reference temperature. The size of the temperature array must be equal to current temperature. Args: temperature (Union[float, ndarray, Tensor, List[float]]): temperature. """ return F.assign(self.ref_temp, self._get_mw_tensor(temperature, 'temperature'))
[文档] def reconstruct_temperature(self, temperature: Union[float, ndarray, Tensor, List[float]]): r""" Reset the reference temperature. Args: temperature (Union[float, ndarray, Tensor, List[float]]): temperature. """ temperature = self._get_mw_tensor(temperature, 'temperature') self.ref_temp = Parameter(temperature, name='ref_temp', requires_grad=False) return self
[文档] def set_degrees_of_freedom(self, dofs: int): r""" Set degrees of freedom (DOFs). Args: dofs (int): degrees of freedom. """ self.degrees_of_freedom = dofs return self
[文档] def velocity_scale(self, sim_kinetics: Tensor, ref_kinetics: Tensor, ratio: float = 1) -> Tensor: r""" Calculate the velocity scale factor for temperature coupling. Args: sim_kinetics (Tensor): Simulation kinetics. Tensor of shape :math:`(B, D)`. Data type is float. ref_kinetics (Tensor): Reference kinetics. Tensor of shape :math:`(B, D)`. Data type is float. ratio (float, optional): Ratio of temperature coupling. Default: ``1``. Returns: Tensor, velocity scale factor. """ sim_kinetics = self.keepdims_sum(sim_kinetics, -1) lambda_ = 1. + ratio * (ref_kinetics / sim_kinetics - 1) return F.sqrt(lambda_)
def construct(self, coordinate: Tensor, velocity: Tensor, force: Tensor, energy: Tensor, kinetics: Tensor, virial: Tensor = None, pbc_box: Tensor = None, step: int = 0, ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]: r""" Control the temperature of the simulation system Args: coordinate (Tensor): Tensor of shape :math:`(B, A, D)`. Data type is float. velocity (Tensor): Tensor of shape :math:`(B, A, D)`. Data type is float. force (Tensor): Tensor of shape :math:`(B, A, D)`. Data type is float. energy (Tensor): Tensor of shape :math:`(B, 1)`. Data type is float. kinetics (Tensor): Tensor of shape :math:`(B, D)`. Data type is float. virial (Tensor): Tensor of shape :math:`(B, D)`. Data type is float. pbc_box (Tensor): Tensor of shape :math:`(B, D)`. Data type is float. step (int): Simulation step. Default: ``0``. Returns: - **coordinate** (Tensor) - Tensor of shape :math:`(B, A, D)`. Data type is float. - **velocity** (Tensor) - Tensor of shape :math:`(B, A, D)`. Data type is float. - **force** (Tensor) - Tensor of shape :math:`(B, A, D)`. Data type is float. - **energy** (Tensor) - Tensor of shape :math:`(B, 1)`. Data type is float. - **kinetics** (Tensor) - Tensor of shape :math:`(B, D)`. Data type is float. - **virial** (Tensor) - Tensor of shape :math:`(B, D)`. Data type is float. - **pbc_box** (Tensor) - Tensor of shape :math:`(B, D)`. Data type is float. Note: :math:`B` is the number of walkers in simulation. :math:`A` is the number of atoms. :math:`D` is the spatial dimension of the simulation system. Usually is 3. """ raise NotImplementedError