sponge.colvar.function.transform 源代码
# Copyright 2021-2023 @ Shenzhen Bay Laboratory &
# Peking University &
# Huawei Technologies Co., Ltd
#
# This code is a part of MindSPONGE:
# MindSpore Simulation Package tOwards Next Generation molecular modelling.
#
# MindSPONGE is open-source software based on the AI-framework:
# MindSpore (https://www.mindspore.cn/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Transformation of Colvar
"""
from typing import Tuple, Callable
from mindspore import Tensor
from ..get import get_colvar
from ..colvar import Colvar
[文档]class TransformCV(Colvar):
r"""
Transformation of the values of the a collective variable :math:`s(R)` using a specific functions :math:`f(x)`.
.. math::
s' = f[s(R)]
Args:
colvar (Colvar): Collective variables (CVs) :math:`s(R)`.
function (Callable): Transformation function :math:`f(x)`.
periodic (bool): Whether the transformed collective variables is periodic. Default: ``False``.
shape (Tuple[int]): Shape of the transformed collective variables. If None is given,
then it will be assigned to the shape of the original `colvar`. Default: ``None``.
unit (str): Unit of the collective variables. Default: ``None``.
NOTE: This is not the `Units` Cell that wraps length and energy.
name (str): Name of the collective variables. Default: 'transform'.
Supported Platforms:
``Ascend`` ``GPU``
"""
def __init__(self,
colvar: Colvar,
function: Callable,
periodic: bool = False,
shape: Tuple[int] = None,
unit: str = None,
name: str = 'transform',
):
super().__init__(
periodic=periodic,
unit=unit,
name=name,
)
self.colvar = get_colvar(colvar)
self.function = function
self.set_pbc(self.colvar.use_pbc)
if shape is None:
shape = self.colvar.shape
self._set_shape(shape)
self._dtype = self.colvar.dtype
[文档] def set_pbc(self, use_pbc: bool):
"""set whether to use periodic boundary condition"""
super().set_pbc(use_pbc)
self.colvar.set_pbc(use_pbc)
return self
def construct(self, coordinate: Tensor, pbc_box: Tensor = None):
r"""return the cosine value of the collective variables (CVs).
Args:
coordinate (Tensor): Tensor of shape `(B, A, D)`. Data type is float.
Position coordinate of colvar in system.
`B` means batchsize, i.e. number of walkers in simulation.
`A` means number of colvar in system.
`D` means dimension of the simulation system. Usually is 3.
pbc_box (Tensor): Tensor of shape `(B, D)`. Data type is float.
Tensor of PBC box. Default: ``None``.
Returns:
cos_cv (Tensor): Tensor of shape `(B, S_1, S_2, ..., S_n)`. Data type is float.
`{S_i}` means dimensions of collective variables.
"""
colvar = self.colvar(coordinate, pbc_box)
return self.function(colvar)