mindquantum.algorithm.qaia.SFC
- class mindquantum.algorithm.qaia.SFC(J, h=None, x=None, n_iter=1000, batch_size=1, dt=0.1, k=0.2)[source]
Coherent Ising Machine with separated feedback control algorithm.
Reference: Coherent Ising machines with optical error correction circuits.
- Parameters
J (Union[numpy.array, csr_matrix]) – The coupling matrix with shape \((N x N)\).
h (numpy.array) – The external field with shape \((N, )\).
x (numpy.array) – The initialized spin value with shape \((N x batch_size)\). Default:
None
.n_iter (int) – The number of iterations. Default:
1000
.batch_size (int) – The number of sampling. Default:
1
.dt (float) – The step size. Default:
0.1
.k (float) – parameter of deviation between mean-field and error variables. Default:
0.2
.