mindquantum.algorithm.qaia.SFC
- class mindquantum.algorithm.qaia.SFC(J, h=None, x=None, n_iter=1000, batch_size=1, dt=0.1, k=0.2)[source]
Coherent Ising Machine with separated feedback control algorithm.
Reference: Coherent Ising machines with optical error correction circuits.
Note
For memory efficiency, the input array 'x' is not copied and will be modified in-place during optimization. If you need to preserve the original data, please pass a copy using x.copy().
- Parameters
J (Union[numpy.array, scipy.sparse.spmatrix]) – The coupling matrix with shape (N x N).
h (numpy.array) – The external field with shape (N, ).
x (numpy.array) – The initialized spin value with shape (N x batch_size). Will be modified during optimization. If not provided (
None
), will be initialized as random values drawn from normal distribution N(0, 0.1). Default:None
.n_iter (int) – The number of iterations. Default:
1000
.batch_size (int) – The number of sampling. Default:
1
.dt (float) – The step size. Default:
0.1
.k (float) – parameter of deviation between mean-field and error variables. Default:
0.2
.
Examples
>>> import numpy as np >>> from mindquantum.algorithm.qaia import SFC >>> J = np.array([[0, -1], [-1, 0]]) >>> solver = SFC(J, batch_size=5) >>> solver.update() >>> print(solver.calc_cut()) [1. 1. 1. 1. 1.] >>> print(solver.calc_energy()) [-1. -1. -1. -1. -1.]