mindquantum.algorithm.qaia.LQA

View Source On Gitee
class mindquantum.algorithm.qaia.LQA(J, h=None, x=None, n_iter=1000, batch_size=1, gamma=0.1, dt=1.0, momentum=0.99)[source]

Local quantum annealing algorithm.

Reference: Quadratic Unconstrained Binary Optimization via Quantum-Inspired Annealing.

Note

For memory efficiency, the input array 'x' is not copied and will be modified in-place during optimization. If you need to preserve the original data, please pass a copy using x.copy().

Parameters
  • J (Union[numpy.array, scipy.sparse.spmatrix]) – The coupling matrix with shape \((N x N)\).

  • h (numpy.array) – The external field with shape \((N, )\).

  • x (numpy.array) – The initialized spin value with shape \((N x batch_size)\). Will be modified during optimization. If not provided (None), will be initialized as random values uniformly distributed in [-0.1, 0.1]. Default: None.

  • n_iter (int) – The number of iterations. Default: 1000.

  • batch_size (int) – The number of sampling. Default: 1.

  • dt (float) – The step size. Default: 1.

  • gamma (float) – The coupling strength. Default: 0.1.

  • momentum (float) – Momentum factor. Default: 0.99.

Examples

>>> import numpy as np
>>> from mindquantum.algorithm.qaia import LQA
>>> J = np.array([[0, -1], [-1, 0]])
>>> solver = LQA(J, batch_size=5)
>>> solver.update()
>>> print(solver.calc_cut())
[1. 1. 1. 1. 1.]
>>> print(solver.calc_energy())
[-1. -1. -1. -1. -1.]
initialize()[source]

Initialize spin values.

update(beta1=0.9, beta2=0.999, epsilon=10e-8)[source]

Dynamical evolution with Adam.

Parameters
  • beta1 (float) – Beta1 parameter. Default: 0.9.

  • beta2 (float) – Beta2 parameter. Default: 0.999.

  • epsilon (float) – Epsilon parameter. Default: 10e-8.