mindquantum.algorithm.qaia.LQA
- class mindquantum.algorithm.qaia.LQA(J, h=None, x=None, n_iter=1000, batch_size=1, gamma=0.1, dt=1.0, momentum=0.99)[source]
Local quantum annealing algorithm.
Reference: Quadratic Unconstrained Binary Optimization via Quantum-Inspired Annealing.
- Parameters
J (Union[numpy.array, csr_matrix]) – The coupling matrix with shape \((N x N)\).
h (numpy.array) – The external field with shape \((N, )\).
x (numpy.array) – The initialized spin value with shape \((N x batch_size)\). Default:
None
.n_iter (int) – The number of iterations. Default:
1000
.batch_size (int) – The number of sampling. Default:
1
.dt (float) – The step size. Default:
1
.gamma (float) – The coupling strength. Default:
0.1
.momentum (float) – Momentum factor. Default:
0.99
.