mindquantum.algorithm.qaia.BSB

View Source On Gitee
class mindquantum.algorithm.qaia.BSB(J, h=None, x=None, n_iter=1000, batch_size=1, dt=1, xi=None, backend='cpu-float32')[source]

Ballistic SB algorithm.

Reference: High-performance combinatorial optimization based on classical mechanics.

Note

For memory efficiency, the input array 'x' is not copied and will be modified in-place during optimization. If you need to preserve the original data, please pass a copy using x.copy().

Parameters
  • J (Union[numpy.array, scipy.sparse.spmatrix]) – The coupling matrix with shape \((N x N)\).

  • h (numpy.array) – The external field with shape \((N, )\).

  • x (numpy.array) – The initialized spin value with shape \((N x batch_size)\). Will be modified during optimization. If not provided (None), will be initialized as random values uniformly distributed in [-0.01, 0.01]. Default: None.

  • n_iter (int) – The number of iterations. Default: 1000.

  • batch_size (int) – The number of sampling. Default: 1.

  • dt (float) – The step size. Default: 1.

  • xi (float) – positive constant with the dimension of frequency. Default: None.

  • backend (str) – Computation backend and precision to use: 'cpu-float32', 'gpu-float16', or 'gpu-int8'. Default: 'cpu-float32'.

Examples

>>> import numpy as np
>>> from mindquantum.algorithm.qaia import BSB
>>> J = np.array([[0, -1], [-1, 0]])
>>> solver = BSB(J, batch_size=5, backend='cpu-float32')
>>> solver.update()
>>> print(solver.calc_cut())
[1. 1. 1. 1. 1.]
>>> print(solver.calc_energy())
[-1. -1. -1. -1. -1.]
update()[source]

Dynamical evolution based on Modified explicit symplectic Euler method.