mindformers.core.MFLossMonitor
- class mindformers.core.MFLossMonitor(learning_rate: Optional[Union[float, LearningRateSchedule]] = None, per_print_times: int = 1, micro_batch_num: int = 1, micro_batch_interleave_num: int = 1, origin_epochs: int = None, dataset_size: int = None, initial_epoch: int = 0, initial_step: int = 0, global_batch_size: int = 0, gradient_accumulation_steps: int = 1, check_for_nan_in_loss_and_grad: bool = False)[源代码]
监控训练过程中loss等相关参数的回调函数。
- 参数:
learning_rate (Union[float, LearningRateSchedule], optional) - 学习率调度器。默认值:
None
。per_print_times (int) - 每多少次step打印日志信息。默认值:
1
。micro_batch_num (int) - 流水线并行时设置的MicroBatch大小。默认值:
None
。micro_batch_interleave_num (int) - interleaved pipeline流水线并行时设置的MicroBatch大小。默认值:
1
。origin_epochs (int) - 训练的epoch数量。默认值:
None
。dataset_size (int) - 训练的数据集数量。默认值:
None
。initial_epoch (int) - 训练开始的epoch数。默认值:
0
。initial_step (int) - 训练开始的step数。默认值:
0
。global_batch_size (int) - 总BatchSize大小。默认值:
0
。gradient_accumulation_steps (int) - 梯度累加步数。默认值:
1
。check_for_nan_in_loss_and_grad (bool) - 是否检查损失和梯度存在Nan。默认值:
False
。calculate_per_token_loss (bool) - 是否计算每个token的loss。默认值:
False
。
样例:
>>> from mindformers.core import MFLossMonitor >>> lr = [0.01, 0.008, 0.006, 0.005, 0.002] >>> monitor = MFLossMonitor(learning_rate=lr, per_print_times=10)