mindformers.core.CrossEntropyLoss

查看源文件
class mindformers.core.CrossEntropyLoss(parallel_config=default_dpmp_config, check_for_nan_in_loss_and_grad=False, calculate_per_token_loss=False, seq_split_num=1, **kwargs)[源代码]

计算预测值和目标值之间的交叉熵损失。

CrossEntropyLoss支持两种不同的目标值(target):

  • 类别索引 (int),取值范围为 [0,C) 其中 C 为类别数,当reduction为 'none' 时,交叉熵损失公式如下:

    (x,y)=L={l1,,lN},ln=wynlogexp(xn,yn)c=1Cexp(xn,c)1{ynignore_index}

    其中, x 表示预测值, t 表示目标值, w 表示权重,N表示batch size, c 限定范围为[0, C-1],表示类索引,其中 C 表示类的数量。

    若reduction不为 'none' (默认为 'mean' ),则

    (x,y)={n=1N1n=1Nwyn1{ynignore_index}ln,if reduction='mean',n=1Nln,if reduction='sum'.
  • 类别概率 (float),用于目标值为多个类别标签的情况。当reduction为 'none' 时,交叉熵损失公式如下:

    (x,y)=L={l1,,lN},ln=c=1Cwclogexp(xn,c)i=1Cexp(xn,i)yn,c

    其中, x 表示预测值, t 表示目标值, w 表示权重,N表示batch size, c 限定范围为[0, C-1],表示类索引,其中 C 表示类的数量。

    若reduction不为 'none' (默认为 'mean' ),则

    (x,y)={n=1NlnN,if reduction='mean',n=1Nln,if reduction='sum'.
参数:
  • parallel_config (mindformers.modules.OpParallelConfig, 可选) - 并行配置字典,用于控制并行训练的策略。默认值: default_dpmp_config

  • check_for_nan_in_loss_and_grad (bool, 可选) - 是否打印局部损失。默认值: False

  • calculate_per_token_loss (bool, 可选) - 是否计算每个token的损失。默认值: False

  • seq_split_num (int, 可选) - 序列流水线并行模式下的序列分割数。默认值: 1

输入:
  • logits (Tensor) - 输入预测值,shape为 (N,C) 。输入值需为对数概率。数据类型仅支持float32或float16。

  • label (Tensor) - 输入目标值。shape为 (N,)

  • input_mask (Tensor) - 损失掩码,shape为 (N,) 。用于指定需要计算损失的位置。若值为0,则对应位置不计算损失。

返回:

Tensor,一个数据类型与logits相同的Tensor。

样例:

>>> import numpy as np
>>> from mindspore import dtype as mstype
>>> from mindspore import Tensor
>>> from mindformers.core import CrossEntropyLoss
>>> loss = CrossEntropyLoss()
>>> logits = Tensor(np.array([[3, 5, 6, 9, 12, 33, 42, 12, 32, 72]]), mstype.float32)
>>> labels_np = np.array([1]).astype(np.int32)
>>> input_mask = Tensor(np.ones(1).astype(np.float32))
>>> labels = Tensor(labels_np)
>>> output = loss(logits, labels, input_mask)
>>> output.shape
(1,)