mindformers.pet.pet_config.LoraConfig
- class mindformers.pet.pet_config.LoraConfig(lora_rank: int = 8, lora_alpha: int = 16, lora_dropout: float = 0.01, lora_a_init: str = 'normal', lora_b_init: str = 'zero', param_init_type: str = None, compute_dtype: str = None, target_modules: str = None, exclude_layers: str = None, freeze_include: List[str] = None, freeze_exclude: List[str] = None, **kwargs)[source]
LoRA algorithm config. Used to set parameters for LoRA model runtime.
- Parameters
lora_rank (int, optional) – The number of rows(columns) in LoRA matrices. Default:
8
.lora_alpha (int, optional) – A constant in lora_rank. Default:
16
.lora_dropout (float, optional) – The dropout rate, greater equal than 0 and less than 1. Default:
0.01
.lora_a_init (str, optional) – The initialization strategy of LoRA A matrix. Refers to (https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html). Default:
normal
.lora_b_init (str, optional) – The initialization strategy of LoRA B matrix. Refers to (https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html). Default:
zero
.param_init_type (str, optional) – The type of data in initialized tensor. Default:
None
.compute_dtype (str, optional) – The compute type of data. Default:
None
.target_modules (str, optional) – The layers that require replacement with LoRA algorithm. Default:
None
.exclude_layers (str, optional) – The layers that do not require replacement with the LoRA algorithm. Default:
None
.freeze_include (List[str], optional) – List of modules to be frozen. Default:
None
.freeze_exclude (List[str], optional) – List of modules that do not need to be frozen. When an item in the freeze_include and freeze_exclude list conflicts, the module that matches this item is not processed. Default:
None
.
- Returns
An instance of LoraConfig.
Examples
>>> from mindformers.pet.pet_config import LoraConfig >>> config = LoraConfig(target_modules='.*wq|.*wk|.*wv|.*wo') >>> print(config) {'pet_type': 'lora', 'lora_rank': 8, 'lora_alpha': 16, 'lora_dropout': 0.01, 'lora_a_init': 'normal', 'lora_b_init' : 'zero', 'param_init_type': mindspore.float16, 'compute_dtype': mindspore.float16, 'target_modules': '.*wq|.*wk|.*wv|.*wo', 'exclude_layers': None , 'freeze_include': None, 'freeze_exclude': None}