mindformers.models.glm2.ChatGLM4Tokenizer
- class mindformers.models.glm2.ChatGLM4Tokenizer(vocab_file, clean_up_tokenization_spaces=False, encode_special_tokens=False, eos_token='<|endoftext|>', pad_token='<|endoftext|>', **kwargs)[source]
Construct a ChatGLM4 tokenizer. Based on byte-level Byte-Pair-Encoding.
- Parameters
vocab_file (str) – The vocabulary file path.
clean_up_tokenization_spaces (bool, optional) – Whether to delete redundant spaces. Default:
False
.encode_special_tokens (bool, optional) – Whether to encode the special tokens. Default:
False
.eos_token (str, tokenizers.AddedToken) – The end of sequence token. Default: "<|endoftext|>" .
pad_token (str, tokenizers.AddedToken) – A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. Default: "<|endoftext|>" .
**kwargs – Other kwargs that will be passed into the base class of the Tokenizer.
- Returns
A ChatGLM4Tokenizer instance.
Examples
>>> from mindformers import ChatGLM4Tokenizer >>> tokenizer = ChatGLM4Tokenizer('tokenizer.model') >>> prompts = ["晚上睡不着应该怎么办"] >>> token_id = tokenizer(prompts) >>> input_ids = token_id['input_ids'] >>> print(input_ids) [[151331, 151333, 101160, 120410, 99379, 103298]] >>> response = tokenizer.decode(input_ids) >>> print(response) ['晚上睡不着应该怎么办']