mindformers.core.EntityScore
- class mindformers.core.EntityScore[source]
Evaluates the precision, recall, and F1 score of predicted entities against the ground truth.
Mathematically, these metrics are defined as follows:
Precision: Measures the fraction of correctly predicted entities out of all predicted entities.
\[\text{Precision} = \frac{\text{Number of correct entities}}{\text{Number of predicted entities}}\]Recall: Measures the fraction of correctly predicted entities out of all actual entities.
\[\text{Recall} = \frac{\text{Number of correct entities}}{\text{Number of actual entities}}\]F1 Score: The harmonic mean of precision and recall, providing a balance between them.
\[\text{F1} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}\]Examples
>>> import numpy as np >>> from mindspore import Tensor >>> from mindformers.core.metric.metric import EntityScore >>> x = Tensor(np.array([[np.arange(0, 22)]])) >>> y = Tensor(np.array([[21]])) >>> metric = EntityScore() >>> metric.clear() >>> metric.update(x, y) >>> result = metric.eval() >>> print(result) ({'precision': 1.0, 'recall': 1.0, 'f1': 1.0}, {'address': {'precision': 1.0, 'recall': 1.0, 'f1': 1.0}})
- eval()[source]
Computing the evaluation result.
- Returns
A dict of evaluation results with precision, recall, and F1 scores of entities relative to their true labels.
- update(*inputs)[source]
Updating the internal evaluation result.
- Parameters
*inputs (List) – Logits and labels. The logits are tensors of shape \([N,C]\) with data type Float16 or Float32, and the labels are tensors of shape \([N,]\) with data type Int32 or Int64, where \(N\) is batch size, and \(C\) is the total number of entity types.