Source code for mindformers.models.auto.processing_auto

# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""AutoProcessor class"""
import os
import shutil
import importlib
import inspect
import json
from collections import OrderedDict

from .tokenization_auto import AutoTokenizer
from ..configuration_utils import PretrainedConfig
from ..tokenization_utils_base import TOKENIZER_CONFIG_FILE
from .image_processing_auto import AutoImageProcessor
from ..image_processing_utils import ImageProcessingMixin
from ..processing_utils import ProcessorMixin
from ..utils import FEATURE_EXTRACTOR_NAME, PROCESSOR_NAME
from .auto_factory import _LazyAutoMapping
from .configuration_auto import CONFIG_MAPPING_NAMES, AutoConfig
from ...tools.hub.hub import get_file_from_repo
from ...tools.generic import experimental_mode_func_checker
from ...tools import get_class_from_dynamic_module, resolve_trust_remote_code, logger
from ...tools.register.config import MindFormerConfig
from ...mindformer_book import MindFormerBook, print_dict
from ..build_processor import build_processor


EXP_ERROR_MSG = "The input yaml_name_or_path should be a path to yaml file, or a " \
                "path to directory which has yaml file, or a model name supported, e.g. llama2_7b."

PROCESSOR_MAPPING_NAMES = OrderedDict(
    [
        ("bert", "BertProcessor"),
        ("blip2", "Blip2Processor"),
        ("bloom", "BloomProcessor"),
        ("clip", "CLIPProcessor"),
        ("glm", "GLMProcessor"),
        ("gpt2", "GPT2Processor"),
        ("llama", "LlamaProcessor"),
        ("mae", "ViTMAEProcessor"),
        ("pangualpha", "PanguAlphaProcessor"),
        ("sam", "SamProcessor"),
        ("swin", "SwinProcessor"),
        ("t5", "T5Processor"),
        ("vit", "ViTProcessor")
    ]
)

PROCESSOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, PROCESSOR_MAPPING_NAMES)


def is_experimental_mode(path):
    """Check if the experimental is used based on yaml name or path"""
    experimental_mode = False
    is_exists = os.path.exists(path)
    is_dir = os.path.isdir(path)
    if is_exists:
        if is_dir:
            yaml_list = [file for file in os.listdir(path)
                         if file.endswith(".yaml")]
            if not yaml_list:
                experimental_mode = True
    else:  # repo
        if "/" in path and path.split("/")[0] != "mindspore":
            experimental_mode = True

    return experimental_mode


def processor_class_from_name(class_name: str):
    """Import procrossor class based on module_name"""
    for module_name, processors in PROCESSOR_MAPPING_NAMES.items():
        if class_name in processors:
            module = importlib.import_module(f".{module_name}", "mindformers.models")
            try:
                return getattr(module, class_name)
            except AttributeError:
                continue

    for processor in PROCESSOR_MAPPING._extra_content.values():  # pylint: disable=W0212
        if getattr(processor, "__name__", None) == class_name:
            return processor

    # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
    # init and we return the proper dummy to get an appropriate error message.
    main_module = importlib.import_module("mindformers")
    if hasattr(main_module, class_name):
        return getattr(main_module, class_name)

    return None


[docs]class AutoProcessor: r""" This is a generic processor class that will be instantiated as one of the processor classes of the library when created with the ``from_pretrained()`` class method. This class cannot be instantiated directly using \_\_init\_\_() (throws an error). Examples: >>> from mindformers import AutoProcessor >>> processor = AutoProcessor.from_pretrained("glm3_6b") """ _support_list = MindFormerBook.get_processor_support_list() _model_type = 0 _model_name = 1 def __init__(self): raise EnvironmentError( "AutoProcessor is designed to be instantiated " "using the `AutoProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod def invalid_yaml_name(cls, yaml_name_or_path): """Check whether it is a valid yaml name""" if yaml_name_or_path.startswith('mindspore'): # Adaptation the name of yaml at the beginning of mindspore, # the relevant file will be downloaded from the Xihe platform. # such as "mindspore/vit_base_p16" yaml_name_or_path = yaml_name_or_path.split('/')[cls._model_name] local_model_type = yaml_name_or_path.split('_')[cls._model_type] local_model_list = cls._support_list[local_model_type] if not isinstance(local_model_list, dict): if yaml_name_or_path in local_model_list: return False raise ValueError(f'\'{yaml_name_or_path}\' is not supported by \'{local_model_type}\', ' f'please select from {local_model_list}') local_model_names = local_model_list.keys() if len(yaml_name_or_path.split('_')) <= cls._model_name or \ not yaml_name_or_path.split('_')[cls._model_name] in local_model_names: raise ValueError(f'\'{yaml_name_or_path}\' is not supported by \'{local_model_type}\', ' f'please select from {local_model_list}') local_model_name = yaml_name_or_path.split('_')[cls._model_name] if yaml_name_or_path not in local_model_list[local_model_name]: raise ValueError(f'\'{yaml_name_or_path}\' is not supported by \'{local_model_type}_{local_model_name}\', ' f'please select from {local_model_list[local_model_name]}') return False
[docs] @classmethod def from_pretrained(cls, yaml_name_or_path, **kwargs): """ From pretrain method, which instantiates a processor by YAML, directory or model_id from modelers.cn. Warning: The API is experimental and may have some slight breaking changes in the next releases. Args: yaml_name_or_path (str): YAML file path, a folder containing JSON file, or a model_id from modelers.cn. The last three are experimental features. kwargs (Dict[str, Any], optional): The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. Returns: A processor which inherited from ProcessorMixin. """ pretrained_model_name_or_path = kwargs.pop("pretrained_model_name_or_path", None) if pretrained_model_name_or_path is not None: yaml_name_or_path = pretrained_model_name_or_path if is_experimental_mode(yaml_name_or_path): processor = cls.from_pretrained_experimental(yaml_name_or_path, **kwargs) else: processor = cls.from_pretrained_origin(yaml_name_or_path, **kwargs) return processor
@classmethod def from_pretrained_origin(cls, yaml_name_or_path, **kwargs): """ From pretrain method, which instantiated a processor by yaml name or path. Args: yaml_name_or_path (str): A supported yaml name or a path to .yaml file, the supported model name could be selected from .show_support_list(). If yaml_name_or_path is model name, it supports model names beginning with mindspore or the model name itself, such as "mindspore/vit_base_p16" or "vit_base_p16". pretrained_model_name_or_path (Optional[str]): Equal to "yaml_name_or_path", if "pretrained_model_name_or_path" is set, "yaml_name_or_path" is useless. Returns: A processor which inherited from ProcessorMixin. """ pretrained_model_name_or_path = kwargs.pop("pretrained_model_name_or_path", None) if pretrained_model_name_or_path is not None: yaml_name_or_path = pretrained_model_name_or_path if not isinstance(yaml_name_or_path, str): raise TypeError(f"yaml_name_or_path should be a str," f" but got {type(yaml_name_or_path)}") is_exist = os.path.exists(yaml_name_or_path) model_name = yaml_name_or_path.split('/')[cls._model_name].split("_")[cls._model_type] \ if yaml_name_or_path.startswith('mindspore') else yaml_name_or_path.split("_")[cls._model_type] if not is_exist and model_name not in cls._support_list.keys(): raise ValueError(f'{yaml_name_or_path} does not exist,' f' and it is not supported by {cls.__name__}. ' f'please select from {cls._support_list}.') if is_exist: logger.info("config in %s is used for auto processor" " building.", yaml_name_or_path) if os.path.isdir(yaml_name_or_path): yaml_list = [file for file in os.listdir(yaml_name_or_path) if file.endswith(".yaml")] yaml_name = os.path.join(yaml_name_or_path, yaml_list[cls._model_type]) config_args = MindFormerConfig(yaml_name) else: config_args = MindFormerConfig(yaml_name_or_path) else: yaml_name = yaml_name_or_path if not cls.invalid_yaml_name(yaml_name_or_path): if yaml_name_or_path.startswith('mindspore'): # Adaptation the name of yaml at the beginning of mindspore, # the relevant file will be downloaded from the Xihe platform. # such as "mindspore/vit_base_p16" yaml_name = yaml_name_or_path.split('/')[cls._model_name] checkpoint_path = os.path.join(MindFormerBook.get_xihe_checkpoint_download_folder(), yaml_name.split('_')[cls._model_type]) else: # Default the name of yaml, # the relevant file will be downloaded from the Obs platform. # such as "vit_base_p16" checkpoint_path = os.path.join(MindFormerBook.get_default_checkpoint_download_folder(), yaml_name_or_path.split('_')[cls._model_type]) else: raise ValueError(f'{yaml_name_or_path} does not exist,' f' or it is not supported by {cls.__name__}.' f' please select from {cls._support_list}.') if not os.path.exists(checkpoint_path): os.makedirs(checkpoint_path, exist_ok=True) yaml_file = os.path.join(checkpoint_path, yaml_name + ".yaml") def get_default_yaml_file(model_name): default_yaml_file = "" for model_dict in MindFormerBook.get_trainer_support_task_list().values(): if model_name in model_dict: default_yaml_file = model_dict.get(model_name) break return default_yaml_file if not os.path.exists(yaml_file): default_yaml_file = get_default_yaml_file(yaml_name) if os.path.realpath(default_yaml_file) and os.path.exists(default_yaml_file): shutil.copy(default_yaml_file, yaml_file) logger.info("default yaml config in %s is used.", yaml_file) else: raise FileNotFoundError(f'default yaml file path must be correct, but get {default_yaml_file}') config_args = MindFormerConfig(yaml_file) lib_path = yaml_name_or_path if not os.path.isdir(lib_path): lib_path = None processor = build_processor(config_args.processor, lib_path=lib_path) logger.info("processor built successfully!") return processor @classmethod @experimental_mode_func_checker(EXP_ERROR_MSG) def from_pretrained_experimental(cls, pretrained_model_name_or_path, **kwargs): """Experimental features.""" config = kwargs.pop("config", None) trust_remote_code = kwargs.pop("trust_remote_code", None) kwargs["_from_auto"] = True processor_class = None processor_auto_map = None # First, let's see if we have a preprocessor config. # Filter the kwargs for `get_file_from_repo`. get_file_from_repo_kwargs = { key: kwargs.get(key) for key in inspect.signature(get_file_from_repo).parameters.keys() if key in kwargs } # Let's start by checking whether the processor class is saved in an processor config processor_config_file = get_file_from_repo( pretrained_model_name_or_path, PROCESSOR_NAME, **get_file_from_repo_kwargs ) if processor_config_file is not None: config_dict, _ = ProcessorMixin.get_processor_dict(pretrained_model_name_or_path, **kwargs) processor_class = config_dict.get("processor_class", None) if "AutoProcessor" in config_dict.get("auto_map", {}): processor_auto_map = config_dict.get("auto_map").get("AutoProcessor") if processor_class is None: preprocessor_config_file = get_file_from_repo( pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME, **get_file_from_repo_kwargs ) if preprocessor_config_file is not None: config_dict, _ = ImageProcessingMixin.get_image_processor_dict(pretrained_model_name_or_path, **kwargs) processor_class = config_dict.get("processor_class", None) if "AutoProcessor" in config_dict.get("auto_map", {}): processor_auto_map = config_dict.get("auto_map").get("AutoProcessor") if processor_class is None: # Next, let's check whether the processor class is saved in a tokenizer tokenizer_config_file = get_file_from_repo( pretrained_model_name_or_path, TOKENIZER_CONFIG_FILE, **get_file_from_repo_kwargs ) if tokenizer_config_file is not None: with open(tokenizer_config_file, encoding="utf-8") as reader: config_dict = json.load(reader) processor_class = config_dict.get("processor_class", None) if "AutoProcessor" in config_dict.get("auto_map", {}): processor_auto_map = config_dict.get("auto_map").get("AutoProcessor") if processor_class is None: # Otherwise, load config, if it can be loaded. if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) if isinstance(config, tuple): config = config[0] # And check if the config contains the processor class. processor_class = getattr(config, "processor_class", None) if hasattr(config, "auto_map") and "AutoProcessor" in config.auto_map: processor_auto_map = config.auto_map["AutoProcessor"] if processor_class is not None: processor_class = processor_class_from_name(processor_class) has_remote_code = processor_auto_map is not None has_local_code = processor_class is not None or type(config) in PROCESSOR_MAPPING # pylint: disable=C0123 trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code ) if has_remote_code and trust_remote_code: # pylint: disable=R1705 processor_class = get_class_from_dynamic_module( processor_auto_map, pretrained_model_name_or_path, **kwargs ) _ = kwargs.pop("code_revision", None) # pylint: disable=C0303 if os.path.isdir(pretrained_model_name_or_path): processor_class.register_for_auto_class() return processor_class.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) elif processor_class is not None: return processor_class.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) # Last try: we use the PROCESSOR_MAPPING. elif type(config) in PROCESSOR_MAPPING: # pylint: disable=C0123 return PROCESSOR_MAPPING[type(config)].from_pretrained(pretrained_model_name_or_path, **kwargs) # At this stage, there doesn't seem to be a `Processor` class available for this model, so let's try a # tokenizer. try: return AutoTokenizer.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) except Exception: # pylint: disable=W0703 try: return AutoImageProcessor.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) except Exception: # pylint: disable=W0703 pass raise ValueError( f"Unrecognized processing class in {pretrained_model_name_or_path}. Can't instantiate a processor, a " "tokenizer, an image processor for this model. Make sure the repository contains " "the files of at least one of those processing classes." )
[docs] @staticmethod def register(config_class, processor_class, exist_ok=False): r""" Register a new processor for this class. Warning: The API is experimental and may have some slight breaking changes in the next releases. Args: config_class (PretrainedConfig): The model config class. processor_class (ProcessorMixin): The processor class. exist_ok (bool, optional): If set to True, no error will be raised even if config_class already exists. Default: ``False`` . """ PROCESSOR_MAPPING.register(config_class, processor_class, exist_ok=exist_ok)
@classmethod def show_support_list(cls): """show support list method""" logger.info("support list of %s is:", cls.__name__) print_dict(cls._support_list) @classmethod def get_support_list(cls): """get support list method""" return cls._support_list