文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindelec.loss.NetWithEval

查看源文件
class mindelec.loss.NetWithEval(net_without_loss, constraints, loss='l2', dataset_input_map=None)[源代码]

具有评估损失的网络封装类。

参数:
  • net_without_loss (Cell) - 无损失定义的训练网络。

  • constraints (Constraints) - pde问题的约束函数。

  • loss (Union[str, dict, Cell]) - 损失函数的名称,例如 "l1""l2""mae" 等。默认值: "l2"

  • dataset_input_map (dict) - 数据集的输入映射,如果输入为 None,第一列将被设置为输入。默认值: None

输入:
  • inputs (Tensor) - 输入是可变长度参数,包含网络输入和标签。

输出:

Tuple,包含标量损失Tensor、shape为 (N,) 的网络输出Tensor和shape为 (N,) 的标签Tensor。

支持平台:

Ascend

样例:

>>> import numpy as np
>>> from mindelec.loss import Constraints, NetWithEval
>>> from mindspore import Tensor, nn
>>> class Net(nn.Cell):
...     def __init__(self, input_dim, output_dim):
...         super(Net, self).__init__()
...         self.fc1 = nn.Dense(input_dim, 64)
...         self.fc2 = nn.Dense(64, output_dim)
...
...     def construct(self, *input):
...         x = input[0]
...         out = self.fc1(x)
...         out = self.fc2(out)
...         return out
>>> net = Net(3, 3)
>>> # For details about how to build the Constraints, please refer to the tutorial
>>> # document on the official website.
>>> constraints = Constraints(dataset, pde_dict)
>>> loss_network = NetWithEval(net, constraints)
>>> input = Tensor(np.ones([1000, 3]).astype(np.float32) * 0.01)
>>> label = Tensor(np.ones([1000, 3]).astype(np.float32))
>>> output_data = loss_network(input, label)