mindearth.data.Era5Data
- class mindearth.data.Era5Data(data_params, run_mode='train', kno_patch=False)[source]
This class is used to process ERA5 re-analyze data, and is used to generate the dataset generator supported by MindSpore. This class inherits the Data class.
- Parameters
data_params (dict) – dataset-related configuration of the model.
run_mode (str, optional) – whether the dataset is used for training, evaluation or testing. Supports [“train”, “test”, “valid”]. Default: 'train'.
kno_patch (bool, optional) – Indicates whether the data is already partitioned into patches. If True, the data is assumed to be pre-processed and no further patching is performed. If False, the data will be processed into patches as per the specified parameters. Default: False.
- Supported Platforms:
Ascend
GPU
Examples
>>> from mindearth.data import Era5Data >>> data_params = { ... 'name': 'era5', ... 'root_dir': './dataset', ... 'feature_dims': 69, ... 't_in': 1, ... 't_out_train': 1, ... 't_out_valid': 20, ... 't_out_test': 20, ... 'valid_interval': 1, ... 'test_interval': 1, ... 'train_interval': 1, ... 'pred_lead_time': 6, ... 'data_frequency': 6, ... 'train_period': [2015, 2015], ... 'valid_period': [2016, 2016], ... 'test_period': [2017, 2017], ... 'patch': True, ... 'patch_size': 8, ... 'batch_size': 8, ... 'num_workers': 1, ... 'grid_resolution': 1.4, ... 'h_size': 128, ... 'w_size': 256 ... } >>> dataset_generator = Era5Data(data_params)