mindearth.cell.AFNONet
- class mindearth.cell.AFNONet(image_size=(128, 256), in_channels=1, out_channels=1, patch_size=8, encoder_depths=12, encoder_embed_dim=768, mlp_ratio=4, dropout_rate=1.0, compute_dtype=mindspore.float32)[source]
The AFNO model is a deep learning model that based on the Fourier Neural Operator (AFNO) and the Vision Transformer structure. The details can be found in Adaptive Fourier Neural Operators: Efficient Token Mixers For Transformers.
- Parameters
image_size (tuple[int]) – The size of the input image. Default: (128, 256).
in_channels (int) – The number of channels in the input space. Default: 1.
out_channels (int) – The number of channels in the output space. Default: 1.
patch_size (int) – The patch size of image. Default: 8.
encoder_depths (int) – The encoder depth of encoder layer. Default: 12.
encoder_embed_dim (int) – The encoder embedding dimension of encoder layer. Default: 768.
mlp_ratio (int) – The rate of mlp layer. Default: 4.
dropout_rate (float) – The rate of dropout layer. Default: 1.0.
compute_dtype (dtype) – The data type for encoder, decoding_embedding, decoder and dense layer. Default: mindspore.float32.
- Inputs:
x (Tensor) - Tensor of shape \((batch\_size, feature\_size, image\_height, image\_width)\).
- Outputs:
output (Tensor) -Tensor of shape \((batch\_size, patch\_size, embed\_dim)\), where \(patch\_size = (image\_height * image\_width) / (patch\_size * patch\_size)\).
- Supported Platforms:
Ascend
GPU
Examples
>>> import numpy as np >>> from mindspore.common.initializer import initializer, Normal >>> from mindearth.cell import AFNONet >>> B, C, H, W = 16, 20, 128, 256 >>> input_ = initializer(Normal(), [B, C, H, W]) >>> net = AFNONet(image_size=(H, W), in_channels=C, out_channels=C, compute_dtype=dtype.float32) >>> output = net(input_) >>> print(output.shape) (16, 128, 5120)