推理模型转换
Windows
Linux
模型转换
中级
高级
概述
MindSpore Lite提供离线转换模型功能的工具,支持多种类型的模型转换,转换后的模型可用于推理。命令行参数包含多种个性化选项,为用户提供方便的转换途径。
目前支持的输入格式有:MindSpore、TensorFlow Lite、Caffe、TensorFlow和ONNX。
通过转换工具转换成的ms
模型,支持转换工具配套及更高版本的Runtime推理框架执行推理。
Linux环境使用说明
环境准备
使用MindSpore Lite模型转换工具,需要进行如下环境准备工作。
目录结构
mindspore-lite-{version}-linux-x64
└── tools
└── converter
├── include
│ └── registry # 自定义算子、模型解析、节点解析、转换优化注册头文件
├── converter # 模型转换工具
│ └── converter_lite # 可执行程序
└── lib # 转换工具依赖的动态库
├── libglog.so.0 # Glog的动态库
├── libmslite_converter_plugin.so # 注册插件的动态库
├── libopencv_core.so.4.5 # OpenCV的动态库
├── libopencv_imgcodecs.so.4.5 # OpenCV的动态库
└── libopencv_imgproc.so.4.5 # OpenCV的动态库
参数说明
MindSpore Lite模型转换工具提供了多种参数设置,用户可根据需要来选择使用。此外,用户可输入./converter_lite --help
获取实时帮助。
下面提供详细的参数说明。
参数 |
是否必选 |
参数说明 |
取值范围 |
默认值 |
---|---|---|---|---|
|
否 |
打印全部帮助信息。 |
- |
- |
|
是 |
输入模型的原始格式。 |
MINDIR、CAFFE、TFLITE、TF、ONNX |
- |
|
是 |
输入模型的路径。 |
- |
- |
|
是 |
输出模型的路径,不需加后缀,可自动生成 |
- |
- |
|
转换Caffe模型时必选 |
输入模型weight文件的路径。 |
- |
- |
|
否 |
1)可作为训练后量化配置文件路径;2)可作为扩展功能配置文件路径。 |
- |
- |
|
否 |
设定在模型序列化时是否需要将Float32数据格式的权重存储为Float16数据格式。 |
on、off |
off |
|
否 |
设定模型输入的维度,输入维度的顺序和原始模型保持一致。对某些特定的模型可以进一步优化模型结构,但是转化后的模型将可能失去动态shape的特性。多个输入用 |
e.g. “inTensorName_1: 1,32,32,4;inTensorName_2:1,64,64,4;” |
- |
|
否 |
设定导出模型的输入format,只对4维输入有效。 |
NHWC、NCHW |
NHWC |
参数名和参数值之间用等号连接,中间不能有空格。
Caffe模型一般分为两个文件:
*.prototxt
模型结构,对应--modelFile
参数;*.caffemodel
模型权值,对应--weightFile
参数。
--fp16
的优先级很低,比如如果开启了量化,那么对于已经量化的权重,--fp16
不会再次生效。总而言之,该选项只会在序列化时对模型中的Float32的权重生效。
inputDataFormat
:一般在集成NCHW规格的三方硬件场景下(例如集成NNIE使用说明),设为NCHW比NHWC会有较明显的性能提升。在其他场景下,用户也可按需设置。
configFile
配置文件采用key=value
的方式定义相关参数,量化相关的配置参数详见训练后量化,扩展功能相关的配置参数详见扩展配置。
使用示例
下面选取了几个常用示例,说明转换命令的使用方法。
以Caffe模型LeNet为例,执行转换命令。
./converter_lite --fmk=CAFFE --modelFile=lenet.prototxt --weightFile=lenet.caffemodel --outputFile=lenet
本例中,因为采用了Caffe模型,所以需要模型结构、模型权值两个输入文件。再加上其他必需的fmk类型和输出路径两个参数,即可成功执行。
结果显示为:
CONVERTER RESULT SUCCESS:0
这表示已经成功将Caffe模型转化为MindSpore Lite模型,获得新文件
lenet.ms
。以MindSpore、TensorFlow Lite、TensorFlow和ONNX模型为例,执行转换命令。
MindSpore模型
model.mindir
./converter_lite --fmk=MINDIR --modelFile=model.mindir --outputFile=model
通过MindSpore v1.1.1之前版本导出的
MindIR
模型,建议采用对应版本的转换工具转换成ms
模型。MindSpore v1.1.1及其之后的版本,转换工具会做前向兼容。TensorFlow Lite模型
model.tflite
./converter_lite --fmk=TFLITE --modelFile=model.tflite --outputFile=model
TensorFlow模型
model.pb
./converter_lite --fmk=TF --modelFile=model.pb --outputFile=model
ONNX模型
model.onnx
./converter_lite --fmk=ONNX --modelFile=model.onnx --outputFile=model
以上几种情况下,均显示如下转换成功提示,且同时获得
model.ms
目标文件。CONVERTER RESULT SUCCESS:0
Windows环境使用说明
环境准备
使用MindSpore Lite模型转换工具,需要进行如下环境准备工作。
目录结构
mindspore-lite-{version}-win-x64
└── tools
└── converter # 模型转换工具
├── converter
│ └── converter_lite.exe # 可执行程序
└── lib
├── libgcc_s_seh-1.dll # MinGW动态库
├── libglog.dll # Glog的动态库
├── libmslite_converter_plugin.dll # 注册插件的动态库
├── libmslite_converter_plugin.dll.a # 注册插件的动态库的链接文件
├── libssp-0.dll # MinGW动态库
├── libstdc++-6.dll # MinGW动态库
└── libwinpthread-1.dll # MinGW动态库
参数说明
参考Linux环境模型转换工具的参数说明。
使用示例
设置日志打印级别为INFO。
set GLOG_v=1
日志级别:0代表DEBUG,1代表INFO,2代表WARNING,3代表ERROR。
下面选取了几个常用示例,说明转换命令的使用方法。
以Caffe模型LeNet为例,执行转换命令。
call converter_lite --fmk=CAFFE --modelFile=lenet.prototxt --weightFile=lenet.caffemodel --outputFile=lenet
本例中,因为采用了Caffe模型,所以需要模型结构、模型权值两个输入文件。再加上其他必需的fmk类型和输出路径两个参数,即可成功执行。
结果显示为:
CONVERTER RESULT SUCCESS:0
这表示已经成功将Caffe模型转化为MindSpore Lite模型,获得新文件
lenet.ms
。以MindSpore、TensorFlow Lite、ONNX模型格式和感知量化模型为例,执行转换命令。
MindSpore模型
model.mindir
call converter_lite --fmk=MINDIR --modelFile=model.mindir --outputFile=model
通过MindSpore v1.1.1之前版本导出的
MindIR
模型,建议采用对应版本的转换工具转换成ms
模型。MindSpore v1.1.1及其之后的版本,转换工具会做前向兼容。TensorFlow Lite模型
model.tflite
call converter_lite --fmk=TFLITE --modelFile=model.tflite --outputFile=model
TensorFlow模型
model.pb
call converter_lite --fmk=TF --modelFile=model.pb --outputFile=model
ONNX模型
model.onnx
call converter_lite --fmk=ONNX --modelFile=model.onnx --outputFile=model
以上几种情况下,均显示如下转换成功提示,且同时获得
model.ms
目标文件。CONVERTER RESULT SUCCESS:0
高级用法
转换工具仅在Linux环境下支持外部扩展功能,包括节点解析扩展、模型解析扩展以及图优化扩展。用户可以按需任意组合,以实现自己的意图。
节点解析扩展:用户自定义模型中某一节点的解析过程,支持ONNX、CAFFE、TF、TFLITE。接口可参考NodeParser。
模型解析扩展:用户自定义模型的整个解析过程,支持ONNX、CAFFE、TF、TFLITE。接口可参考ModelParser。
图优化扩展:模型解析之后,用户可自定义对图的优化过程。接口可参考PassBase。
节点解析扩展需要依赖flatbuffers和protobuf及三方框架的序列化文件,并且flatbuffers和protobuf需要与发布件采用的版本一致,序列化文件需保证兼容发布件采用的序列化文件。发布件中不提供flatbuffers、protobuf及序列化文件,用户需自行编译,并生成序列化文件。用户可以从MindSpore仓中获取flabuffers、probobuf、ONNX原型文件、CAFFE原型文件、TF原型文件和TFLITE原型文件。
本章节将通过MindSpore Lite转换工具扩展功能的示例程序,涵盖了Pass的创建全流程以及编译链接全流程,来使用户能够快速了解转换工具的图优化扩展功能的使用。
本章节以add.tflite模型为例。该模型仅包含一个简单的Add算子,通过扩展的Pass类,将Add算子转化为Custom算子,最终输出Custom单算子模型。
相关代码放置在mindspore/lite/examples/converter_extend目录。
Pass扩展
算子InferShape扩展
在离线转换阶段,我们会对模型的每一个节点的输出张量进行推断,包括输出张量的Format、DataType以及Shape,因此,离线转换阶段,用户需提供自己实现的算子的推断过程,这里用户可以参考算子Infershape扩展说明。
示例演示
编译
环境要求
编译构建
在
mindspore/lite/examples/converter_extend
目录下执行build.sh,将自动下载MindSpore Lite发布件并编译Demo。bash build.sh
若使用该build脚本下载MindSpore Lite发布件失败,请手动下载硬件平台为CPU、操作系统为Ubuntu-x64的MindSpore Lite发布件mindspore-lite-{version}-linux-x64.tar.gz,将解压后
tools/converter/lib
目录、tools/converter/include
目录拷贝到mindspore/lite/examples/converter_extend
目录下。通过手动下载并且将文件放到指定位置后,需要再次执行build.sh脚本才能完成编译构建。
编译输出
在
mindspore/lite/examples/converter_extend/build
目录下生成了libconverter_extend_tutorial.so
的动态库。
执行程序
拷贝动态库
将生成的
libconverter_extend_tutorial.so
动态库文件拷贝到发布件的tools/converter/lib
下。进入发布件的转换目录
cd ${PACKAGE_ROOT_PATH}/tools/converter/converter
创建converter的配置文件(converter.cfg),文件内容如下:
[registry] plugin_path=libconverter_extend_tutorial.so # 用户请配置动态库的正确路径
将转换工具需要的动态链接库加入环境变量
LD_LIBRARY_PATH
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/tools/converter/lib
执行converter
./converter_lite --fmk=TFLITE --modelFile=add.tflite --configFile=converter.cfg --outputFile=add_extend
执行完后,将生成名为add_extend.ms
的模型文件,文件路径由参数outputFile
决定。