mindspore_gl.nn.Set2Set

class mindspore_gl.nn.Set2Set(input_size, num_iters, num_layers)[源代码]

集合中的sequence to sequence。

来自论文 Order Matters: Sequence to sequence for sets

对于批处理图中的每个子图,计算:

\[ \begin{align}\begin{aligned}\begin{split}q_t = \mathrm{LSTM} (q^*_{t-1}) \\\end{split}\\\begin{split}\alpha_{i,t} = \mathrm{softmax}(x_i \cdot q_t) \\\end{split}\\\begin{split}r_t = \sum_{i=1}^N \alpha_{i,t} x_i\\\end{split}\\q^*_t = q_t \Vert r_t\end{aligned}\end{align} \]
参数:
  • input_size (int) - 输入节点特征的维度。

  • num_iters (int) - 迭代次数。

  • num_layers (int) - 池化层数。

输入:
  • x (Tensor) - 要更新的输入节点特征。Shape为 \((N, D)\), 其中 \(N\) 是节点数,\(D\) 是节点的特征大小。

  • g (BatchedGraph) - 输入图。

输出:
  • x (Tensor) - 图形的输出表示。Shape为 \((2, D_{out})\) 其中 \(D_{out}\) 是节点特征的双倍大小

异常:
  • TypeError - 如果 input_sizenum_itersnum_layers 不是int。

支持平台:

Ascend GPU

样例:

>>> import numpy as np
>>> import mindspore as ms
>>> from mindspore_gl.nn import Set2Set
>>> from mindspore_gl import BatchedGraphField
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32)
>>> graph_mask = ms.Tensor([1, 1], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ver_subgraph_idx,
...                                         edge_subgraph_idx, graph_mask)
>>> node_feat = np.random.random((n_nodes, 4))
>>> node_feat = ms.Tensor(node_feat, ms.float32)
>>> net = Set2Set(4, 3, 2)
>>> ret = net(node_feat, *batched_graph_field.get_batched_graph())
>>> print(ret.shape)
(2, 8)