mindspore_gl.nn.glob.set2set 源代码

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Set2Set Layer."""
import mindspore as ms
import mindspore.ops as ops
from mindspore_gl import BatchedGraph
from .. import GNNCell


[文档]class Set2Set(GNNCell): r""" Sequence to sequence for sets. From the paper `Order Matters: Sequence to sequence for sets <https://arxiv.org/abs/1511.06391>`_ . For each subgraph in the batched graph, compute: .. math:: q_t = \mathrm{LSTM} (q^*_{t-1}) \\ \alpha_{i,t} = \mathrm{softmax}(x_i \cdot q_t) \\ r_t = \sum_{i=1}^N \alpha_{i,t} x_i\\ q^*_t = q_t \Vert r_t Args: input_size (int): dim for input node features. num_iters (int): number of iterations. num_layers (int): number of layers. Inputs: - **x** (Tensor) - The input node features to be updated. The shape is :math:`(N, D)` where :math:`N` is the number of nodes, and :math:`D` is the feature size of nodes. - **g** (BatchedGraph) - The input graph. Outputs: - **x** (Tensor) - The output representation for graphs. The shape is :math:`(2, D_{out})` where :math:`D_{out}` is the double feature size of nodes Raises: TypeError: If `input_size` or `num_iters` or `num_layers` is not an int. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import numpy as np >>> import mindspore as ms >>> from mindspore_gl.nn import Set2Set >>> from mindspore_gl import BatchedGraphField >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ver_subgraph_idx, ... edge_subgraph_idx, graph_mask) >>> node_feat = np.random.random((n_nodes, 4)) >>> node_feat = ms.Tensor(node_feat, ms.float32) >>> net = Set2Set(4, 3, 2) >>> ret = net(node_feat, *batched_graph_field.get_batched_graph()) >>> print(ret.shape) (2, 8) """ def __init__(self, input_size, num_iters, num_layers): super().__init__() assert isinstance(input_size, int) and input_size > 0, "input_size must be positive int" assert isinstance(num_iters, int) and num_iters > 0, "num_iters must be positive int" assert isinstance(num_layers, int) and num_layers > 0, "num_layers must be positive int" self.input_size = input_size self.num_iters = num_iters self.num_layers = num_layers self.output_size = input_size * 2 self.lstm = ms.nn.LSTM(self.output_size, self.input_size, self.num_layers) # pylint: disable=arguments-differ def construct(self, x, g: BatchedGraph): """ Construct function for Set2Set. """ batch_size = ops.Shape()(g.graph_mask)[0] h = (ops.Zeros()((self.num_layers, batch_size, self.input_size), ms.float32), ops.Zeros()((self.num_layers, batch_size, self.input_size), ms.float32)) q_star = ops.Zeros()((batch_size, self.output_size), ms.float32) for _ in range(self.num_iters): q, h = self.lstm(ops.ExpandDims()(q_star, 0), h) q = ops.Reshape()(q, (batch_size, self.input_size)) e = x * g.broadcast_nodes(q) e_sum = ops.ReduceSum(True)(e, -1) alpha = g.softmax_nodes(e_sum) r = x * alpha readout = g.sum_nodes(r) q_star = ops.Concat(-1)((q, readout)) return q_star