mindspore_gl.nn.SortPooling
- class mindspore_gl.nn.SortPooling(k)[源代码]
将排序池化应用于图形中的节点。 来自论文 End-to-End Deep Learning Architecture for Graph Classification 。
排序池化首先将节点特征沿特征维度升序排序。 然后选择Topk节点的排名特征(按每个节点的最大值排序)。
- 参数:
k (int) - 每个图保留的节点数。
- 输入:
x (Tensor) - 要更新的输入节点特征。Shape为 \((N, D)\), 其中 \(N\) 是节点数, \(D\) 是节点的特征大小。
g (BatchedGraph) - 输入图。
- 输出:
x (Tensor) - 图形的输出表示。Shape为 \((2, D_{out})\) 其中 \(D_{out}\) 是节点的特征的双倍大小。
- 异常:
TypeError - 如果 k 不是int。
- 支持平台:
Ascend
GPU
样例:
>>> import numpy as np >>> import mindspore as ms >>> from mindspore_gl.nn import SortPooling >>> from mindspore_gl import BatchedGraphField >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ver_subgraph_idx, ... edge_subgraph_idx, graph_mask) >>> node_feat = np.random.random((n_nodes, 4)) >>> node_feat = ms.Tensor(node_feat, ms.float32) >>> net = SortPooling(k=2) >>> ret = net(node_feat, *batched_graph_field.get_batched_graph()) >>> print(ret.shape) (2, 8)