# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""random walks on graphs"""
import numpy
import mindspore_gl
from mindspore_gl import sample_kernel
__all__ = ['random_walk_unbias_on_homo']
[docs]def random_walk_unbias_on_homo(homo_graph: mindspore_gl.graph.MindHomoGraph,
seeds: numpy.ndarray,
walk_length: int):
r"""
Random walks sampling on homo graph.
Args:
homo_graph(mindspore_gl.graph.MindHomoGraph): the source graph which is sampled from.
seeds(numpy.ndarray) : random seeds for sampling.
walk_length(int): sample path length.
Returns:
- **array** - sample node :math:`(len(seeds), walk\_length)`.
Raises:
TypeError: If `walk_length` is not a positive integer.
TypeError: If `seeds` is not numpy.ndarray int32.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import numpy as np
>>> import networkx
>>> from scipy.sparse import csr_matrix
>>> from mindspore_gl.graph import MindHomoGraph, CsrAdj
>>> from mindspore_gl.sampling.randomwalks import random_walk_unbias_on_homo
>>> node_count = 10000
>>> edge_prob = 0.1
>>> graph = networkx.generators.random_graphs.fast_gnp_random_graph(node_count, edge_prob)
>>> edge_array = np.transpose(np.array(list(graph.edges)))
>>> row = edge_array[0]
>>> col = edge_array[1]
>>> data = np.zeros(row.shape)
>>> csr_mat = csr_matrix((data, (row, col)), shape=(node_count, node_count))
>>> generated_graph = MindHomoGraph()
>>> node_dict = {idx: idx for idx in range(node_count)}
>>> edge_count = col.shape[0]
>>> edge_ids = np.array(list(range(edge_count))).astype(np.int32)
>>> generated_graph.set_topo(CsrAdj(csr_mat.indptr.astype(np.int32), csr_mat.indices.astype(np.int32)),
... node_dict, edge_ids)
>>> nodes = np.arange(0, node_count)
>>> out = random_walk_unbias_on_homo(homo_graph=generated_graph, seeds=nodes[:5].astype(np.int32),
... walk_length=10)
>>> print(out)
# results will be random for suffle
[[ 0 9493 8272 1251 3922 4180 211 1083 4198 9981 7669]
[ 1 1585 1308 4703 1115 4989 9365 1098 1618 5987 8312]
[ 2 2352 7214 5956 2184 1573 1352 7005 2325 6211 8667]
[ 3 8723 5645 3691 4857 5501 113 4140 6666 2282 1248]
[ 4 4354 9551 5224 3156 8693 346 8899 6046 6011 5310]]
"""
if not isinstance(seeds, numpy.ndarray):
raise TypeError("The positive data type is {},\
but it should be numpy ndarray or list.".format(type(seeds)))
if not isinstance(walk_length, int) or walk_length <= 0:
raise TypeError("The node type is {},\
but it should be positive int.".format(type(walk_length)))
# sample
out = sample_kernel.random_walk_cpu_unbias(homo_graph.adj_csr.indptr,
homo_graph.adj_csr.indices,
walk_length, seeds)
return out