Source code for mindspore_gl.parser.api

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""API"""
import mindspore as ms


class SrcVertex:
    """Source Vertex"""

    def __init__(self):
        raise NotImplementedError("SrcVertex Init: not implemented!")


class DstVertex:
    """Destination Vertex"""

    def __init__(self, innb):
        self._innbs = [innb]
        self.in_edges = None

    @property
    def innbs(self):
        """
        Return a list of src_vertex of current vertex.

        Examples:
            >>> for v in g.dst_vertex:
            ...     v.h = g.sum([u.h for u in v.innbs])
        """

        return self._innbs

    @property
    def inedges(self):
        """
        Return a list of (src, edge) tuples for current vertex.

        Examples:
            >>> for v in g.dst_vertex:
            ...     [u.a + e.b for u,e in v.inedges]
        """
        if self.in_edges is None:
            raise ValueError('in_edges value is None')
        return self.in_edges


class Edge:
    """Edge"""

    def __init__(self, src, dst):
        dst.in_edges = [(src, self)]
        self._src = src
        self._dst = dst


[docs]class Graph: """ Graph class. This is the class which should be annotated in the construct function for `GNNCell` class. The last argument in the 'construct' function will be resolved into the 'mindspore_gl.Graph' whole graph class. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) >>> class SrcVertex(GNNCell): ... def construct(self, x, g: Graph): ... g.set_vertex_attr({"h": x}) ... return [v.h for v in g.src_vertex] >>> ret = SrcVertex()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1.0], [2.0], [1.0], [2.0], [0.0], [1.0], [2.0], [3.0], [1.0]] """ def __init__(self): self._src_vertex = SrcVertex() self._dst_vertex = [DstVertex(self._src_vertex)] self._edge = [Edge(self._src_vertex, dst_v) for dst_v in self._dst_vertex] @property def dst_vertex(self): """ Return a list of destination vertex that only supports iterate its `innbs` . Returns: - mindspore.Tensor, a list of destination vertex. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) >>> class DstVertex(GNNCell): >>> def construct(self, x, g: Graph): >>> g.set_vertex_attr({"h": x}) >>> return [v.h for v in g.dst_vertex] >>> ret = DstVertex()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1.0], [2.0], [1.0], [2.0], [0.0], [1.0], [2.0], [3.0], [1.0]] """ return self._dst_vertex @property def src_vertex(self): """ Return a list of source vertex that only supports iterate with its `outnbs` . Returns: - mindspore.Tensor, a list of source vertex. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) >>> class SrcVertex(GNNCell): ... def construct(self, x, g: Graph): ... g.set_vertex_attr({"h": x}) ... return [v.h for v in g.src_vertex] >>> ret = SrcVertex()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1.0], [2.0], [1.0], [2.0], [0.0], [1.0], [2.0], [3.0], [1.0]] """ return self._src_vertex @property def src_idx(self): r""" A tensor with shape :math:`(N\_EDGES)`, represents the source node index of COO edge matrix. Returns: - mindspore.Tensor, a list of source vertex. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) >>> class SrcIdx(GNNCell): ... def construct(self, x, g: Graph): ... return g.src_idx >>> ret = SrcIdx()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8] """ @property def dst_idx(self): r""" A tensor with shape :math:`(N\_EDGES)`, represents the destination node index of COO edge matrix. Returns: - mindspore.Tensor, a list of destination vertex. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) >>> class DstIdx(GNNCell): ... def construct(self, x, g: Graph): ... return g.dst_idx >>> ret = DstIdx()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8] """ @property def n_nodes(self): """ An integer, represent the nodes count of the graph. Returns: - int, nodes numbers of the graph. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) >>> class NNode(GNNCell): ... def construct(self, x, g: Graph): ... return g.n_nodes >>> ret = NNode()(node_feat, *graph_field.get_graph()) >>> print(ret) 9 """ @property def n_edges(self): """ An integer, represent the edges count of the graph. Returns: - int, edges numbers of the graph. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) >>> class NEdge(GNNCell): ... def construct(self, x, g: Graph): ... return g.n_edges >>> ret = NEdge()(node_feat, *graph_field.get_graph()) >>> print(ret) 11 """
[docs] def set_vertex_attr(self, feat_dict): r""" Set attributes for vertices in vertex-centric environment. Keys will be attribute's name, values will be attributes' data. Note: set_vertex_attr is equals to set_src_attr + set_dst_attr. Args: feat_dict (Dict): key type: str, value type: recommend tensor of shape :math:`(N\_NODES, F)`, :math:`F` is the dimension of the node feature. Returns: - mindspore.Tensor, the feature of vertex. Raises: TypeError: If `feat_dict` is not a Dict. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestSetVertexAttr(GNNCell): ... def construct(self, x, g: Graph): ... g.set_vertex_attr({"h": x}) ... return [v.h for v in g.dst_vertex] * [u.h for u in g.src_vertex] ... >>> ret = TestSetVertexAttr()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1.0], [4.0], [1.0], [4.0], [0.0], [1.0], [4.0], [9.0], [1.0]] """
[docs] def set_src_attr(self, feat_dict): r""" Set attributes for source vertices in vertex-centric environment. Keys will be attribute's name, values will be attributes' data. Args: feat_dict (Dict): key type: str, value type: recommend tensor of shape :math:`(N\_NODES, F)`, :math:`F` is the dimension of the node feature. Returns: - mindspore.Tensor, the feature of source vertex. Raises: TypeError: If `feat_dict` is not a Dict. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestSetSrcAttr(GNNCell): ... def construct(self, x, g: Graph): ... g.set_src_attr({"h": x}) ... return [u.h for u in g.src_vertex] ... >>> ret = TestSetSrcAttr()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1.0], [2.0], [1.0], [2.0], [0.0], [1.0], [2.0], [3.0], [1.0]] """
[docs] def set_dst_attr(self, feat_dict): r""" Set attributes for destination vetices in vertex-centric environment Keys will be attribute's name, values will be attributes' data. Args: feat_dict (Dict): key type: str, value type: recommend tensor of shape :math:`(N\_NODES, F)`, :math:`F` is the dimension of the node feature. Returns: - mindspore.Tensor, the feature of destination vertex. Raises: TypeError: If `feat_dict` is not a Dict. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestSetDstAttr(GNNCell): ... def construct(self, x, g: Graph): ... g.set_dst_attr({"h": x}) ... return [v.h for v in g.dst_vertex] ... >>> ret = TestSetDstAttr()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1.0], [2.0], [1.0], [2.0], [0.0], [1.0], [2.0], [3.0], [1.0]] """
[docs] def set_edge_attr(self, feat_dict): r""" Set attributes for edges in vertex-centric environment. Keys will be attribute's name, values will be attributes' data. Args: feat_dict (Dict): key type: str, value type: recommend feature tensor of shape :math:`(N\_EDGES, F)`, :math:`F` is the shape of the feature per edge. Recommend the shape of value is :math:`(N\_EDGES, 1)` when the feature dimension is 1. Returns: - mindspore.Tensor, the feature of edges. Raises: TypeError: If `feat_dict` is not a Dict. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) >>> edge_feat = ms.Tensor([[1], [2], [1], [3], [1], [4], [1], [5], [1], [1], [1]], ms.float32) ... >>> class TestSetEdgeAttr(GNNCell): ... def construct(self, nh, eh, g: Graph): ... g.set_vertex_attr({"nh": nh}) ... g.set_edge_attr({"eh": eh}) ... for v in g.dst_vertex: ... v.h = g.sum([u.nh * e.eh for u, e in v.inedges]) ... return [v.h for v in g.dst_vertex] ... >>> ret = TestSetEdgeAttr()(node_feat, edge_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[2.0], [2.0], [0.0], [0.0], [14.0], [6.0], [1.0], [0.0], [3.0]] """
[docs] def set_graph_attr(self, feat_dict): """ Set attributes for the whole graph in vertex-centric environment. Keys will be attribute's name, values will be attributes' data. Args: feat_dict (Dict): key type: str, value type: recommend feature tensor for the whole graph. Returns: - mindspore.Tensor, the feature of graph. Raises: TypeError: If `feat_dict` is not a Dict. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> g_attr = ms.Tensor([[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]], ms.float32) >>> v_attr = ms.Tensor([1.0, 1.0], ms.float32) ... >>> class TestSetGraphAttr(GNNCell): ... def construct(self, vh, gh, g: Graph): ... g.set_graph_attr({"x": gh}) ... g.set_vertex_attr({"h": vh}) ... for v in g.dst_vertex: ... v.h = g.sum([u.h * g.x for u in v.innbs]) ... return [v.h for v in g.dst_vertex] ... >>> ret = TestSetGraphAttr()(v_attr, g_attr, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[0.0, 1.0], [0.0, 2.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]] """
[docs] def sum(self, neigh_feat): r""" Aggregating node features from their neighbour and generates a node-level representation by aggregate function 'sum'. Args: neigh_feat (List[`SrcVertex` feature or `Edge` feature]): a list of `SrcVertex` or `Edge` attribute represents the neighbour nodes or edges feature, with shape :math:`(N, F)`, :math:`N` is the number of `SrcVertex` or `Edge`, :math:`F` is the feature dimension of the `SrcVertex` or `Edge` attribute. Returns: - mindspore.Tensor, a tensor with shape :math:`(N, F)`, :math:`N` is the number of nodes of the graph, :math:`F` is the feature dimension of the node. Raises: TypeError: If `neigh_feat` is not a list of `Edge` or `SrcVertex`. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestSum(GNNCell): ... def construct(self, x, g: Graph): ... g.set_vertex_attr({"x": x}) ... for v in g.dst_vertex: ... v.h = g.sum([u.x for u in v.innbs]) ... return [v.h for v in g.dst_vertex] ... >>> ret = TestSum()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1.0], [2.0], [0.0], [0.0], [3.0], [2.0], [1.0], [0.0], [3.0]] """
[docs] def max(self, neigh_feat): r""" Aggregating node features from their neighbour and generates a node-level representation by aggregate function 'max'. Args: neigh_feat (List[`SrcVertex` feature or `Edge` feature]): a list of `SrcVertex` or `Edge` attributes represents the neighbour nodes or edges feature, with shape :math:`(N, F)`, :math:`N` is the number of `SrcVertex` or `Edge`, :math:`F` is the feature dimension of the `SrcVertex` or `Edge` attribute. Returns: - mindspore.Tensor, a tensor with shape :math:`(N, F)`, :math:`N` is the number of nodes of the graph, :math:`F` is the feature dimension of the node. Raises: TypeError: If `neigh_feat` is not a list of `Edge` or `SrcVertex`. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestMax(GNNCell): ... def construct(self, x, g: Graph): ... g.set_vertex_attr({"x": x}) ... for v in g.dst_vertex: ... v.h = g.max([u.x for u in v.innbs]) ... return [v.h for v in g.dst_vertex] ... >>> ret = TestMax()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1.0], [1.0], [0.0], [0.0], [2.0], [2.0], [1.0], [0.0], [1.0]] """
[docs] def min(self, neigh_feat): r""" Aggregating node features from their neighbour and generates a node-level representation by aggregate function 'min'. Args: neigh_feat (List[`SrcVertex` feature or `Edge` feature]): a list of `SrcVertex` or `Edge` attributes represents the neighbour nodes or edges feature, with shape :math:`(N, F)`, :math:`N` is the number of `SrcVertex` or `Edge`, :math:`F` is the feature dimension of the `SrcVertex` or `Edge` attribute. Returns: - mindspore.Tensor, a tensor with shape :math:`(N, F)`, :math:`N` is the number of nodes of the graph, :math:`F` is the feature dimension of the node. Raises: TypeError: If `neigh_feat` is not a list of `Edge` or `SrcVertex`. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestMin(GNNCell): ... def construct(self, x, g: Graph): ... g.set_vertex_attr({"x": x}) ... for v in g.dst_vertex: ... v.h = g.min([u.x for u in v.innbs]) ... return [v.h for v in g.dst_vertex] ... >>> ret = TestMin()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]] """
[docs] def avg(self, neigh_feat): r""" Aggregating node features from their neighbour and generates a node-level representation by aggregate function 'avg'. Args: neigh_feat (List[`SrcVertex` feature or `Edge` feature]): a list of `SrcVertex` or `Edge` attributes represents the neighbour nodes or edges feature, with shape :math:`(N, F)`, :math:`N` is the number of `SrcVertex` or `Edge`, :math:`F` is the feature dimension of the `SrcVertex` or `Edge` attribute. Returns: - mindspore.Tensor, a tensor with shape :math:`(N, F)`, :math:`N` is the number of nodes of the graph, :math:`F` is the feature dimension of the node. Raises: TypeError: If `neigh_feat` is not a list of `Edge` or `SrcVertex`. Examples: >>> import math >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestAvg(GNNCell): ... def construct(self, x, g: Graph): ... g.set_vertex_attr({"x": x}) ... for v in g.dst_vertex: ... v.h = g.avg([u.x for u in v.innbs]) ... return [v.h for v in g.dst_vertex] ... >>> ret = TestAvg()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> NAN = 1e9 >>> for row in ret: ... if math.isnan(row[0]): ... row[0] = NAN >>> print(ret) [[1.0], [1.0], [1000000000.0], [0.0], [1.5], [2.0], [1.0], [1000000000.0], [1.0]] """
[docs] def dot(self, feat_x, feat_y): r""" Dot mul operation for two node Tensors. Args: feat_x (`SrcVertex` feature or `DstVertex` feature): the arttribute of `SrcVertex` or `DstVertex` represent feature tensor of graph nodes with shape :math:`(N, F)`, :math:`N` is the number of nodes of the graph, :math:`F` is the feature dimension of the node. feat_y (`SrcVertex` feature or `DstVertex` feature): the arttribute of `SrcVertex` or `DstVertex` represent feature tensor of graph nodes with shape :math:`(N, F)`, :math:`N` is the number of nodes of the graph, :math:`F` is the feature dimension of the node. Returns: - mindspore.Tensor, a tensor with shape :math:`(N, 1)`, `N` is the number of nodes of the graph. Raises: TypeError: If `feat_x` is not in the 'mul' operation support types [Tensor,Number,List,Tuple]. TypeError: If `feat_y` is not in the 'mul' operation support types [Tensor,Number,List,Tuple]. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestDot(GNNCell): ... def construct(self, x, g: Graph): ... g.set_vertex_attr({"src": x, "dst": x}) ... for v in g.dst_vertex: ... v.h = [g.dot(v.src, u.dst) for u in v.innbs] ... return [v.h for v in g.dst_vertex] ... >>> ret = TestDot()(node_feat, *graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[2.0], [1.0], [2.0], [2.0], [0.0], [0.0], [2.0], [0.0], [1.0], [1.0], [1.0]] """
[docs] def topk_nodes(self, node_feat, k, sortby=None): r""" Return a graph-level representation by a graph-wise top-k on node features. If `sortby` is set to ``None``, the function would perform top-k on all dimensions independently. Note: The value participated in the sort by axis (all value if `sortby` is ``None``) should be greater than zero. Due to the reason that we create zero value for padding and they may cover the features. Args: node_feat (Tensor): A tensor represent the node feature, with shape :math:`(N\_NODES, F)`. :math:`F` is the dimension of the node feature. k (int): Represent how many nodes for top-k. sortby (int): Sort according to which feature. If is ``None``, all features are sorted independently. Default is ``None``. Returns: - **topk_output** (Tensor) - a tensor with shape :math:`(B, K, F)`, where :math:`B` is the batch size of the input graph. :math:`K` is the input 'k', :math:`F` is the feature size. - **topk_indices** (Tensor), - a tensor with shape :math:`(B, K)` ( :math:`(B, K, F)` if `sortby` is set to ``None``), where :math:`B` is the batch size of the input graph, :math:`F` is the feature size. Raises: TypeError: If `node_feat` is not a Tensor. TypeError: If `k` is not an int. ValueError: If `sortby` is not an int. Examples: >>> import mindspore as ms >>> from mindspore_gl import GraphField, Graph >>> from mindspore_gl.nn import GNNCell >>> node_feat = ms.Tensor([ ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... ], ms.float32) ... >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) ... >>> class TestTopkNodes(GNNCell): ... def construct(self, x, g: Graph): ... return g.topk_nodes(x, 2, 1) ... >>> output, indices = TestTopkNodes()(node_feat, *graph_field.get_graph()) >>> output = output.asnumpy().tolist() >>> indices = indices.asnumpy().tolist() >>> print(output) [[9.0, 7.0, 5.0, 8.0], [8.0, 7.0, 6.0, 5.0]] >>> print(indices) [3, 4] """
[docs] def topk_edges(self, node_feat, k, sortby=None): r""" Return a graph-level representation by a graph-wise top-k on node features. If `sortby` is set to ``None``, the function would perform top-k on all dimensions independently. Args: node_feat (Tensor): A tensor represent the node feature, with shape :math:`(N\_NODES, F)`. :math:`F` is the dimension of the node feature. k (int): Represent how many nodes for top-k. sortby (int): Sort according to which feature. If is ``None``, all features are sorted independently. Default is ``None``. Note: The value participated in the sort by axis (all value if `sortby` is ``None``) should be greater than zero. Due to the reason that we create zero value for padding and they may cover the features. Returns: - **topk_output** (Tensor) - a tensor with shape :math:`(B, K, F)`, where :math:`B` is the batch size of the input graph. :math:`K` is the input 'k', :math:`F` is the feature size. - **topk_indices** (Tensor), - a tensor with shape :math:`(B, K)` ( :math:`(B, K, F)` if sortby is set to None), where :math:`B` is the batch size of the input graph, :math:`F` is the feature size. Raises: TypeError: If `node_feat` is not a Tensor. TypeError: If `k` is not an int. ValueError: If `sortby` is not an int. Examples: >>> import mindspore as ms >>> from mindspore_gl import GraphField, Graph >>> from mindspore_gl.nn import GNNCell >>> node_feat = ms.Tensor([ ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... ], ms.float32) ... >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) ... >>> class TestTopkEdges(GNNCell): ... def construct(self, x, g: Graph): ... return g.topk_edges(x, 2, 1) ... >>> output, indices = TestTopkEdges()(node_feat, *graph_field.get_graph()) >>> output = output.asnumpy().tolist() >>> indices = indices.asnumpy().tolist() >>> print(output) [[9.0, 7.0, 5.0, 8.0], [8.0, 7.0, 6.0, 5.0]] >>> print(indices) [3, 4] """
[docs] def in_degree(self): r""" Get the in degree of each node in a graph. Returns: Tensor, a tensor with shape :math:`(N, 1)`, represent the in degree of each node, :math:`N` is the number of nodes of the graph. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) ... >>> class TestInDegree(GNNCell): ... def construct(self, g: Graph): ... return g.in_degree() ... >>> ret = TestInDegree()(*graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1], [2], [0], [1], [2], [1], [1], [0], [3]] """
[docs] def out_degree(self): r""" Get the out degree of each node in a graph. Returns: Tensor, a tensor with shape :math:`(N, 1)`, represent the out degree of each node, :math:`N` is the number of nodes of the graph. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) ... >>> class TestOutDegree(GNNCell): ... def construct(self, g: Graph): ... return g.out_degree() ... >>> ret = TestOutDegree()(*graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[1], [0], [2], [1], [1], [2], [1], [0], [3]] """
[docs] def adj_to_dense(self): r""" Get the dense adjacent matrix of the graph. Note: Due to system limitations, only COO format are supported for build graph and dense format adjacency matrix can be generated. Returns: Tensor, a tensor with shape :math:`(N, N)`, :math:`N` is the number of nodes of the graph. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, GraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) ... >>> class TestAdjToDense(GNNCell): ... def construct(self, g: Graph): ... return g.adj_to_dense() ... >>> ret = TestAdjToDense()(*graph_field.get_graph()).asnumpy().tolist() >>> print(ret) [[0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 3]] """
[docs]class BatchedGraph(Graph): """ Batched Graph class. This is the class which should be annotated in the construct function for `GNNCell` class. The last argument in the 'construct' function will be resolved into the 'mindspore_gl.BatchedGraph' batched graph class. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx =>>> ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 2, 2], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], ms.int32) >>> graph_mask = ms.Tensor([1, 1, 0], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) >>> class SrcIdx(GNNCell): ... def construct(self, bg: BatchedGraph): ... return bg.src_idx >>> ret = SrcIdx()(*batched_graph_field.get_batched_graph()).asnumpy().tolist() >>> print(ret) [0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8] """ @property def ver_subgraph_idx(self): r""" Indicates each node belonging to which subgraph. Returns: Tensor, A tensor with shape :math:`(N)`, :math:`N` is the number of the nodes of the graph. Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> node_feat = ms.Tensor([ ... # graph 1: ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... # graph 2: ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... ], ms.float32) >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class VerSubgraphIdx(GNNCell): ... def construct(self, x, bg: BatchedGraph): ... return bg.ver_subgraph_idx ... >>> ret = VerSubgraphIdx()(node_feat, *batched_graph_field.get_batched_graph()) >>> print(ret) [0 0 0 1 1 1 1] """ @property def edge_subgraph_idx(self): r""" Indicates each edge belonging to which subgraph. Returns: Tensor, A tensor with shape :math:`(N\_EDGES,)`. Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> node_feat = ms.Tensor([ ... # graph 1: ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... # graph 2: ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... ], ms.float32) >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class EdgeSubgraphIdx(GNNCell): ... def construct(self, x, bg: BatchedGraph): ... return bg.edge_subgraph_idx ... >>> ret = EdgeSubgraphIdx()(node_feat, *batched_graph_field.get_batched_graph()) >>> print(ret) # [0 0 0 1 1 1 1 1] """ @property def graph_mask(self): r""" Indicates whether the subgraph is exist. Returns: Tensor, A tensor with shape :math:`(N\_GRAPHS,)`. Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> node_feat = ms.Tensor([ ... # graph 1: ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... # graph 2: ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... ], ms.float32) >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class GraphMask(GNNCell): ... def construct(self, x, bg: BatchedGraph): ... return bg.graph_mask ... >>> ret = GraphMask()(node_feat, *batched_graph_field.get_batched_graph()) >>> print(ret) [1 1] """ @property def n_graphs(self): """ Represent the graphs count of the batched graph. Returns: int, graph numbers. Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> node_feat = ms.Tensor([ ... # graph 1: ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... # graph 2: ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... ], ms.float32) >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class NGraphs(GNNCell): ... def construct(self, x, bg: BatchedGraph): ... return bg.n_graphs ... >>> ret = NGraphs()(node_feat, *batched_graph_field.get_batched_graph()) >>> print(ret) 2 """
[docs] def node_mask(self): r""" Get the node mask after padding. In the mask, 1 represent the node exists and 0 represent the node is generated by padding. The node mask is calculated according to the `graph_mask` and `ver_subgraph_idx`. Returns: Tensor, a tensor with shape :math:`(N\_NODES, )`. Inside tensor, 1 represent the node exists and 0 represent the node is generated by padding. Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 2, 2], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], ms.int32) >>> graph_mask = ms.Tensor([1, 1, 0], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class TestNodeMask(GNNCell): ... def construct(self, bg: BatchedGraph): ... return bg.node_mask() ... >>> ret = TestNodeMask()(*batched_graph_field.get_batched_graph()).asnumpy().tolist() >>> print(ret) [1, 1, 1, 1, 1, 1, 1, 0, 0] """
[docs] def edge_mask(self): r""" Get the edge mask after padding. In the mask, 1 represent the edge exists and 0 represent the edge is generated by padding. The edge mask is calculated according to the `graph_mask` and `edge_subgraph_idx`. Returns: Tensor, a tensor with shape :math:`(N\_EDGES,)`. Inside tensor, 1 represent the edge exists and 0 represent the edge is generated by padding. Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 2, 2], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], ms.int32) >>> graph_mask = ms.Tensor([1, 1, 0], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class TestEdgeMask(GNNCell): ... def construct(self, bg: BatchedGraph): ... return bg.edge_mask() ... >>> ret = TestEdgeMask()(*batched_graph_field.get_batched_graph()).asnumpy().tolist() >>> print(ret) [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0] """
[docs] def num_of_nodes(self): r""" Get the number of nodes of each subgraph in a batched graph. Note: After padding operation, a not existing subgraph is created and all not existing nodes created belong to this subgraph. If you want to clear it, you need to multiply it with a `graph_mask` manually. Returns: Tensor, a tensor with shape :math:`(N\_GRAPHS, 1)` represent each subgraph contains how many nodes. Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 2, 2], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], ms.int32) >>> graph_mask = ms.Tensor([1, 1, 0], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class TestNumOfNodes(GNNCell): ... def construct(self, bg: BatchedGraph): ... return bg.num_of_nodes() ... >>> ret = TestNumOfNodes()(*batched_graph_field.get_batched_graph()).asnumpy().tolist() >>> print(ret) [[3], [4], [2]] """
[docs] def num_of_edges(self): r""" Get the number of edges of each subgraph in a batched graph. Note: After padding operation, a not existing subgraph is created and all not existing edges created belong to this subgraph. If you want to clear it, you need to multiply it with a graph mask manually. Returns: Tensor, a tensor with shape :math:`(N\_GRAPHS, 1)`, represent each subgraph contains how many edges. Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 2, 2], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], ms.int32) >>> graph_mask = ms.Tensor([1, 1, 0], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class TestNumOfEdges(GNNCell): ... def construct(self, bg: BatchedGraph): ... return bg.num_of_edges() ... >>> ret = TestNumOfEdges()(*batched_graph_field.get_batched_graph()).asnumpy().tolist() >>> print(ret) [[3], [5], [3]] """
[docs] def sum_nodes(self, node_feat): r""" Aggregating node features and generates a graph-level representation by aggregation type 'sum'. The node_feat should have shape :math:`(N\_NODES, F)`, `sum_nodes` operation will aggregate the nodes feat according to `ver_subgraph_idx`. The output tensor will have a shape :math:`(N\_GRAPHS, F)`. :math:`F` is the dimension of the node feature. Args: node_feat (Tensor): a tensor represents the node feature, with shape :math:`(N\_NODES, F)`, :math:`F` is the dimension of the node node feature. Returns: Tensor, a tensor with shape :math:`(N\_GRAPHS, F)`, :math:`F` is the dimension of the node feature. Raises: TypeError: If `node_feat` is not a Tensor which is the type of operation 'shape'. Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> node_feat = ms.Tensor([ ... # graph 1: ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... # graph 2: ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... ], ms.float32) ... >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class TestSumNodes(GNNCell): ... def construct(self, x, bg: BatchedGraph): ... return bg.sum_nodes(x) ... >>> ret = TestSumNodes()(node_feat, *batched_graph_field.get_batched_graph()).asnumpy().tolist() >>> print(ret) [[4.0, 9.0, 6.0, 11.0], [26.0, 22.0, 16.0, 20.0]] """
[docs] def sum_edges(self, edge_feat): r""" Aggregating edge features and generates a graph-level representation by aggregation type 'sum'. The edge_feat should have shape :math:`(N\_EDGES, F)`. `sum_edges` operation will aggregate the edge_feat. according to `edge_subgraph_idx`. The output tensor will have a shape :math:`(N\_GRAPHS, F)`. :math:`F` is the dimension of the edge feature. Args: edge_feat (Tensor): a tensor represents the edge feature, with shape :math:`(N\_EDGES, F)`. :math:`F` is the dimension of the edge attribute. Returns: Tensor, a tensor with shape :math:`(N\_GRAPHS, F)`. :math:`F` is the dimension of the edge attribute. Raises: TypeError: If `edge_feat` is not a Tensor which is the type of operation 'shape'. Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> edge_feat = ms.Tensor([ ... # graph 1: ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... # graph 2: ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... [3, 2, 3, 3], ... ], ms.float32) ... >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class TestSumEdges(GNNCell): ... def construct(self, x, bg: BatchedGraph): ... return bg.sum_edges(x) ... >>> ret = TestSumEdges()(edge_feat, *batched_graph_field.get_batched_graph()).asnumpy().tolist() >>> print(ret) [[4.0, 9.0, 6.0, 11.0], [29.0, 24.0, 19.0, 23.0]] """
[docs] def max_nodes(self, node_feat): r""" Aggregating node features and generates a graph-level representation by aggregation type 'max'. The node_feat should have shape :math:`(N\_NODES, F)`. `max_nodes` operation will aggregate the node_feat according to ver_subgraph_idx. The output tensor will have a shape :math:`(N\_GRAPHS, F)`. :math:`F` is the dimension of the node feature. Args: node_feat (Tensor): a tensor represents the node feature, with shape :math:`(N\_NODES, F)`. :math:`F` is the dimension of the node feature. Returns: Tensor, a tensor with shape :math:`(N\_GRAPHS, F)`, :math:`F` is the dimension of the node feature. Raises: TypeError: If `node_feat` is not a Tensor which is the type of operation 'shape'. Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> node_feat = ms.Tensor([ ... # graph 1: ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... # graph 2: ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... ], ms.float32) ... >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class TestMaxNodes(GNNCell): ... def construct(self, x, bg: BatchedGraph): ... return bg.max_nodes(x) ... >>> ret = TestMaxNodes()(node_feat, *batched_graph_field.get_batched_graph()).asnumpy().tolist() >>> print(ret) [[2.0, 4.0, 3.0, 4.0], [9.0, 7.0, 6.0, 8.0]] """
[docs] def max_edges(self, edge_feat): r""" Aggregating edge features and generates a graph-level representation by aggregation type 'max'. The edge_feat should have shape :math:`(N\_EDGES, F)`. Max_edges operation will aggregate the edge_feat according to edge_subgraph_idx. The output tensor will have a shape :math:`(N\_GRAPHS, F)`. :math:`F` is the dimension of the edge feature. Args: edge_feat (Tensor): a tensor represents the edge feature, with shape :math:`(N\_EDGES, F)`. :math:`F` is the dimension of the edge feature. Returns: Tensor, a tensor with shape :math:`(N\_GRAPHS, F)`. :math:`F` is the dimension of the edge feature. Raises: TypeError: If `edge_feat` is not a Tensor which is the type of operation 'shape'. Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> edge_feat = ms.Tensor([ ... # graph 1: ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... # graph 2: ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... [3, 2, 3, 3], ... ], ms.float32) ... >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class TestMaxEdges(GNNCell): ... def construct(self, x, bg: BatchedGraph): ... return bg.max_edges(x) ... >>> ret = TestMaxEdges()(edge_feat, *batched_graph_field.get_batched_graph()).asnumpy().tolist() >>> print(ret) [[2.0, 4.0, 3.0, 4.0], [9.0, 7.0, 6.0, 8.0]] """
[docs] def avg_nodes(self, node_feat): r""" Aggregating node features and generates a graph-level representation by aggregation type 'avg'. The node_feat should have shape :math:`(N\_NODES, F)`. Avg_nodes operation will aggregate the node_feat according to ver_subgraph_idx. The output tensor will have a shape :math:`(N\_GRAPHS, F)`. :math:`F` is the dimension of the node feature. Args: node_feat (Tensor): a tensor represents the node feature, with shape :math:`(N\_NODES, F)`. :math:`F` is the dimension of the node feature. Returns: Tensor, a tensor with shape :math:`(N\_GRAPHS, F)`. :math:`F` is the dimension of the node feature. Raises: TypeError: If `node_feat` is not a Tensor which is the type of operation. Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> node_feat = ms.Tensor([ ... # graph 1: ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... # graph 2: ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... ], ms.float32) ... >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class TestAvgNodes(GNNCell): ... def construct(self, x, bg: BatchedGraph): ... return bg.avg_nodes(x) ... >>> ret = TestAvgNodes()(node_feat, *batched_graph_field.get_batched_graph()).asnumpy().tolist() >>> print(ret) [[1.3333333730697632, 3.0, 2.0, 3.6666667461395264], [6.5, 5.5, 4.0, 5.0]] """
[docs] def avg_edges(self, edge_feat): r""" Aggregating edge features and generates a graph-level representation by aggregation type 'avg'. The edge_feat should have shape :math:`(N\_EDGES, F)`. Avg_edges operation will aggregate the edge_feat according to edge_subgraph_idx. The output tensor will have a shape :math:`(N\_GRAPHS, F)`. :math:`F` is the dimension of the edge feature. Args: edge_feat (Tensor): a tensor represents the edge feature, with shape :math:`(N\_EDGES, F)`. :math:`F` is the dimension of the edge feature. Returns: Tensor, a tensor with shape :math:`(N\_GRAPHS, F)`, :math:`F` is the dimension of the edge feature. Raises: TypeError: If `edge_feat` is not a Tensor which is the type of operation 'shape'. Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> edge_feat = ms.Tensor([ ... # graph 1: ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... # graph 2: ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... [3, 2, 3, 3], ... ], ms.float32) ... >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class TestAvgEdges(GNNCell): ... def construct(self, x, bg: BatchedGraph): ... return bg.avg_edges(x) ... >>> ret = TestAvgEdges()(edge_feat, *batched_graph_field.get_batched_graph()).asnumpy().tolist() >>> print(ret) [[1.3333333730697632, 3.0, 2.0, 3.6666667461395264], [5.800000190734863, 4.800000190734863, 3.799999952316284, 4.599999904632568]] """
[docs] def softmax_nodes(self, node_feat): r""" Perform graph-wise softmax on the node features. For each node :math:`v\in\mathcal{V}` and its feature :math:`x_v`, calculate its normalized feature as follows: .. math:: z_v = \frac{\exp(x_v)}{\sum_{u\in\mathcal{V}}\exp(x_u)} Each subgraph computes softmax independently. The result tensor has the same shape as the original node feature. Args: node_feat (Tensor): a tensor represent the node feature, with shape :math:`(N\_NODES, F)`, :math:`F` is the feature size. Returns: Tensor, a tensor with shape :math:`(N\_NODES, F)`, :math:`F` is the feature size. Raises: TypeError: If `node_feat` is not a Tensor. Examples: >>> import mindspore as ms >>> import numpy as np >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> node_feat = ms.Tensor([ ... # graph 1: ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... # graph 2: ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... ], ms.float32) ... >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class TestSoftmaxNodes(GNNCell): ... def construct(self, x, bg: BatchedGraph): ... return bg.softmax_nodes(x) ... >>> ret = TestSoftmaxNodes()(node_feat, *batched_graph_field.get_batched_graph()).asnumpy() >>> print(np.array2string(ret, formatter={'float_kind':'{0:.5f}'.format})) [[0.21194, 0.09003, 0.66524, 0.42232], [0.57612, 0.66524, 0.09003, 0.15536], [0.21194, 0.24473, 0.24473, 0.42232], [0.57601, 0.42112, 0.24364, 0.84315], [0.21190, 0.42112, 0.66227, 0.04198], [0.21190, 0.15492, 0.08963, 0.11411], [0.00019, 0.00284, 0.00446, 0.00077]] """
[docs] def softmax_edges(self, edge_feat): r""" Perform graph-wise softmax on the edge features. For each edge :math:`v\in\mathcal{V}` and its feature :math:`x_v`, calculate its normalized feature as follows: .. math:: z_v = \frac{\exp(x_v)}{\sum_{u\in\mathcal{V}}\exp(x_u)} Each subgraph computes softmax independently. The result tensor has the same shape as the original edge feature. Args: edge_feat (Tensor): a tensor represent the edge feature, with shape :math:`(N\_EDGES, F)`, :math:`F` is the feature size. Returns: Tensor, a tensor with shape :math:`(N\_EDGES, F)`, :math:`F` is the feature size. Raises: TypeError: If `edge_feat` is not a Tensor. Examples: >>> import mindspore as ms >>> import numpy as np >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> edge_feat = ms.Tensor([ ... # graph 1: ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... # graph 2: ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... [3, 2, 3, 3], ... ], ms.float32) ... >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class TestSoftmaxEdges(GNNCell): ... def construct(self, x, bg: BatchedGraph): ... return bg.softmax_edges(x) ... >>> ret = TestSoftmaxEdges()(edge_feat, *batched_graph_field.get_batched_graph()).asnumpy() >>> print(np.array2string(ret, formatter={'float_kind':'{0:.5f}'.format})) [[0.21194, 0.09003, 0.66524, 0.42232], [0.57612, 0.66524, 0.09003, 0.15536], [0.21194, 0.24473, 0.24473, 0.42232], [0.57518, 0.41993, 0.23586, 0.83838], [0.21160, 0.41993, 0.64113, 0.04174], [0.21160, 0.15448, 0.08677, 0.11346], [0.00019, 0.00283, 0.00432, 0.00076], [0.00143, 0.00283, 0.03192, 0.00565]] """
[docs] def broadcast_nodes(self, graph_feat): r""" Broadcast graph-level features to node-level representation. Args: graph_feat (Tensor): a tensor represent the graph feature, with shape :math:`(N\_GRAPHS, F)`, :math:`F` is the feature size. Returns: Tensor, a tensor with shape :math:`(N\_NODES, F)`, :math:`F` is the feature size. Raises: TypeError: If `graph_feat` is not a Tensor. Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> node_feat = ms.Tensor([ ... # graph 1: ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... # graph 2: ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... ], ms.float32) ... >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class TestBroadCastNodes(GNNCell): ... def construct(self, x, bg: BatchedGraph): ... ret = bg.max_nodes(x) ... return bg.broadcast_nodes(ret) ... >>> ret = TestBroadCastNodes()(node_feat, *batched_graph_field.get_batched_graph()).asnumpy().tolist() >>> print(ret) [[2.0, 4.0, 3.0, 4.0], [2.0, 4.0, 3.0, 4.0], [2.0, 4.0, 3.0, 4.0], [9.0, 7.0, 6.0, 8.0], [9.0, 7.0, 6.0, 8.0], [9.0, 7.0, 6.0, 8.0], [9.0, 7.0, 6.0, 8.0]] """
[docs] def broadcast_edges(self, graph_feat): r""" Broadcast graph-level features to edge-level representation. Args: graph_feat (Tensor): a tensor represent the graph feature, with shape :math:`(N\_GRAPHS, F)`, :math:`F` is the feature size. Returns: Tensor, a tensor with shape :math:`(N\_EDGES, F)`, :math:`F` is the feature size. Raises: TypeError: If `graph_feat` is not a Tensor. Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraph, BatchedGraphField >>> from mindspore_gl.nn import GNNCell >>> edge_feat = ms.Tensor([ ... # graph 1: ... [1, 2, 3, 4], ... [2, 4, 1, 3], ... [1, 3, 2, 4], ... # graph 2: ... [9, 7, 5, 8], ... [8, 7, 6, 5], ... [8, 6, 4, 6], ... [1, 2, 1, 1], ... [3, 2, 3, 3], ... ], ms.float32) ... >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) ... >>> class TestBroadCastEdges(GNNCell): ... def construct(self, x, bg: BatchedGraph): ... ret = bg.max_edges(x) ... return bg.broadcast_edges(ret) ... >>> ret = TestBroadCastEdges()(edge_feat, *batched_graph_field.get_batched_graph()).asnumpy().tolist() >>> print(ret) [[2.0, 4.0, 3.0, 4.0], [2.0, 4.0, 3.0, 4.0], [2.0, 4.0, 3.0, 4.0], [9.0, 7.0, 6.0, 8.0], [9.0, 7.0, 6.0, 8.0], [9.0, 7.0, 6.0, 8.0], [9.0, 7.0, 6.0, 8.0], [9.0, 7.0, 6.0, 8.0]] """
[docs]class HeterGraph: """ The heterogeneous Graph. This is the class which should be annotated in the construct function for `GNNCell` class. The last argument in the 'construct' function will be resolved into the 'mindspore_gl.HeterGraph' heterogeneous class. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, HeterGraph, HeterGraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = [9, 2] >>> n_edges = [11, 1] >>> src_idx = [ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32), ms.Tensor([0], ms.int32)] >>> dst_idx = [ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32), ms.Tensor([1], ms.int32)] >>> heter_graph_field = HeterGraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) >>> class SrcIdx(GNNCell): ... def construct(self, bg: HeterGraph): ... return bg.src_idx >>> ret = SrcIdx()(*heter_graph_field.get_heter_graph()) >>> print(ret) [Tensor(shape=[11], dtype=Int32, value= [0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8]), Tensor(shape=[1], dtype=Int32, value= [0])] """ @property def src_idx(self): r""" A tensor with shape :math:`(N\_EDGES)`, represents the source node index of COO edge matrix. Returns: - List[Tensor], a list of source vertex. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, HeterGraph, HeterGraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = [9, 2] >>> n_edges = [11, 1] >>> src_idx = [ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32), ms.Tensor([0], ms.int32)] >>> dst_idx = [ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32), ms.Tensor([1], ms.int32)] >>> heter_graph_field = HeterGraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class SrcIdx(GNNCell): ... def construct(self, x, bg: HeterGraph): ... return bg.src_idx >>> ret = SrcIdx()(node_feat, *heter_graph_field.get_heter_graph()) >>> print(ret) [Tensor(shape=[11], dtype=Int32, value= [0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8]), Tensor(shape=[1], dtype=Int32, value= [0])] """ @property def dst_idx(self): r""" A tensor with shape :math:`(N\_EDGES)`, represents the destination node index of COO edge matrix. Returns: - List[Tensor], a list of destination vertex. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, HeterGraph, HeterGraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = [9, 2] >>> n_edges = [11, 1] >>> src_idx = [ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32), ms.Tensor([0], ms.int32)] >>> dst_idx = [ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32), ms.Tensor([1], ms.int32)] >>> heter_graph_field = HeterGraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class DstIdx(GNNCell): ... def construct(self, x, bg: HeterGraph): ... return bg.dst_idx >>> ret = DstIdx()(node_feat, *heter_graph_field.get_heter_graph()) >>> print(ret) [Tensor(shape=[11], dtype=Int32, value= [1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8]), Tensor(shape=[1], dtype=Int32, value= [1])] """ @property def n_nodes(self): """ A list of integer, represent the nodes count of the graph. Returns: - List, a list of nodes numbers of the graph. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, HeterGraph, HeterGraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = [9, 2] >>> n_edges = [11, 1] >>> src_idx = [ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32), ms.Tensor([0], ms.int32)] >>> dst_idx = [ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32), ms.Tensor([1], ms.int32)] >>> heter_graph_field = HeterGraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class NNodes(GNNCell): ... def construct(self, x, bg: HeterGraph): ... return bg.n_nodes >>> ret = NNodes()(node_feat, *heter_graph_field.get_heter_graph()) >>> print(ret) [9, 2] """ @property def n_edges(self): """ A list of integer, represent the edges count of the graph. Returns: - List[int], a list edges numbers of the graph. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, HeterGraph, HeterGraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = [9, 2] >>> n_edges = [11, 1] >>> src_idx = [ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32), ms.Tensor([0], ms.int32)] >>> dst_idx = [ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32), ms.Tensor([1], ms.int32)] >>> heter_graph_field = HeterGraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class NEdges(GNNCell): ... def construct(self, x, bg: HeterGraph): ... return bg.n_edges >>> ret = NEdges()(node_feat, *heter_graph_field.get_heter_graph()) >>> print(ret) [11, 1] """ def __init__(self): pass
[docs] def get_homo_graph(self, etype): """ Get the specific nodes, edges for etype. Args: etype (int): The edge type. Returns: List[Tensor], a homo graph. Examples: >>> import mindspore as ms >>> from mindspore_gl import Graph, HeterGraph, HeterGraphField >>> from mindspore_gl.nn import GNNCell >>> n_nodes = [9, 2] >>> n_edges = [11, 1] >>> src_idx = [ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32), ms.Tensor([0], ms.int32)] >>> dst_idx = [ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32), ms.Tensor([1], ms.int32)] >>> heter_graph_field = HeterGraphField(src_idx, dst_idx, n_nodes, n_edges) >>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32) ... >>> class TestSum(GNNCell): ... def construct(self, x, g: Graph): ... g.set_vertex_attr({"x": x}) ... for v in g.dst_vertex: ... v.h = g.sum([u.x for u in v.innbs]) ... return [v.h for v in g.dst_vertex] ... >>> class TestHeterGraph(GNNCell): ... def __init__(self): ... super().__init__() ... self.sum = TestSum() ... ... def construct(self, x, hg: HeterGraph): ... return self.sum(x, *hg.get_homo_graph(0)) ... >>> ret = TestHeterGraph()(node_feat, *heter_graph_field.get_heter_graph()).asnumpy().tolist() >>> print(ret) [[1.0], [2.0], [0.0], [0.0], [3.0], [2.0], [1.0], [0.0], [3.0]] """
[docs]class GraphField: r""" The data container for a graph. The edge information are stored in COO format. Args: src_idx (Tensor, optional): A tensor with shape :math:`(N\_EDGES)`, with int dtype, represents the source node index of COO edge matrix. Default: ``None``. dst_idx (Tensor, optional): A tensor with shape :math:`(N\_EDGES)`, with int dtype, represents the destination node index of COO edge matrix. Default: ``None``. n_nodes (int, optional): An integer, represent the nodes count of the graph. Default: ``None``. n_edges (int, optional): An integer, represent the edges count of the graph. Default: ``None``. indices (Tensor, optional): A tensor with shape :math:`(N\_EDGES)`, with int dtype, represents the indices of CSR edge matrix. Default: ``None``. indptr (Tensor, optional): A tensor with shape :math:`(N\_NODES)`, with int dtype, represents the indptr of CSR edge matrix. Default: ``None``. indices_backward (Tensor, optional): A tensor with shape :math:`(N\_EDGES)`, with int dtype, represents the indices backward of CSR edge matrix. Default: ``None``. indptr_backward (Tensor, optional): A tensor with shape :math:`(N\_NODES)`, with int dtype, represents the indptr backward of CSR edge matrix. Default: ``None``. csr (bool, optional): Is the matrix CSR type. Default: ``False``. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import mindspore as ms >>> from mindspore_gl import GraphField >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> print(graph_field.get_graph()) [Tensor(shape=[11], dtype=Int32, value= [0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8]), Tensor(shape=[11], dtype=Int32, value= [1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8]), 9, 11] """ def __init__(self, src_idx=None, dst_idx=None, n_nodes=None, n_edges=None, indices=None, indptr=None, indices_backward=None, indptr_backward=None, csr=False): self.csr = csr self.n_nodes = n_nodes self.n_edges = n_edges if isinstance(self.n_nodes, ms.Tensor): if self.n_nodes.dtype == ms.bool_: raise TypeError(f"n_nodes should be an integer, but got {self.n_nodes.dtype}.") self.n_nodes = int(self.n_nodes.asnumpy()) if isinstance(self.n_nodes, bool): raise TypeError(f"n_nodes should be an integer, but got {type(self.n_nodes)}.") if not isinstance(self.n_nodes, int): raise TypeError(f"n_nodes should be an integer, but got {type(self.n_nodes)}.") if isinstance(self.n_edges, ms.Tensor): if self.n_edges.dtype == ms.bool_: raise TypeError(f"n_edges should be an integer, but got {self.n_edges.dtype}.") self.n_edges = int(self.n_edges.asnumpy()) if isinstance(self.n_edges, bool): raise TypeError(f"n_edges should be an integer, but got {type(self.n_edges)}.") if not isinstance(self.n_edges, int): raise TypeError(f"n_edges should be an integer, but got {type(self.n_edges)}.") if not csr: self.src_idx = src_idx self.dst_idx = dst_idx if not isinstance(self.src_idx, ms.Tensor): raise TypeError(f"src_idx should be a tensor, but got {type(self.src_idx)}.") if not isinstance(self.src_idx.dtype, ms.Int): raise TypeError(f"src_idx should be an int datatype, but got {self.src_idx.dtype}.") if not isinstance(self.dst_idx, ms.Tensor): raise TypeError(f"dst_idx should be a tensor, but got {type(self.dst_idx)}.") if not isinstance(self.dst_idx.dtype, ms.Int): raise TypeError(f"dst_idx should be an int datatype, but got {self.dst_idx.dtype}.") else: self.indices = indices self.indptr = indptr self.indices_backward = indices_backward self.indptr_backward = indptr_backward if not isinstance(self.indices, ms.Tensor): raise TypeError(f"indices should be a tensor, but got {type(self.indices)}.") if not isinstance(self.indices.dtype, ms.Int): raise TypeError(f"indices should be an int datatype, but got {self.indices.dtype}.") if not isinstance(self.indptr, ms.Tensor): raise TypeError(f"indptr should be a tensor, but got {type(self.indptr)}.") if not isinstance(self.indptr.dtype, ms.Int): raise TypeError(f"indptr should be an int datatype, but got {self.indptr.dtype}.") if not isinstance(self.indices_backward, ms.Tensor): raise TypeError(f"indices_backward should be a tensor, but got {type(self.indices_backward)}.") if not isinstance(self.indices_backward.dtype, ms.Int): raise TypeError(f"indices_backward should be an int datatype, but got {self.indices_backward.dtype}.") if not isinstance(self.indptr_backward, ms.Tensor): raise TypeError(f"indptr_backward should be a tensor, but got {type(self.indptr_backward)}.") if not isinstance(self.indptr_backward.dtype, ms.Int): raise TypeError(f"indptr_backward should be an int datatype, but got {self.indptr_backward.dtype}.")
[docs] def get_graph(self): """ Get the Graph. Returns: List, a list of tensor, which should be used for construct function. """ if self.csr: return [self.indices, self.indptr, self.n_nodes, self.n_edges, self.indices_backward, self.indptr_backward] return [self.src_idx, self.dst_idx, self.n_nodes, self.n_edges]
[docs]class BatchedGraphField(GraphField): r""" The data container for a batched graph. The edge information are stored in COO format. Args: src_idx (Tensor, optional): A tensor with shape :math:`(N\_EDGES)`, with int dtype, represents the source node index of COO edge matrix. Default: ``None``. dst_idx (Tensor, optional): A tensor with shape :math:`(N\_EDGES)`, with int dtype, represents the destination node index of COO edge matrix. Default: ``None``. n_nodes (int, optional): An integer, represent the nodes count of the graph. Default: ``None``. n_edges (int, optional): An integer, represent the edges count of the graph. Default: ``None``. ver_subgraph_idx (Tensor, optional): A tensor with shape :math:`(N\_NODES)`, with int dtype, indicates each node belonging to which subgraph. Default: ``None``. edge_subgraph_idx (Tensor, optional): A tensor with shape :math:`(N\_EDGES,)`, with int dtype, indicates each edge belonging to which subgraph. Default: ``None``. graph_mask (Tensor, optional): A tensor with shape :math:`(N\_GRAPHS,)`, with int dtype, indicates whether the subgraph is exist. Default: ``None``. indices (Tensor, optional): A tensor with shape :math:`(N\_EDGES)`, with int dtype, represents the indices of CSR edge matrix. Default: ``None``. indptr (Tensor, optional): A tensor with shape :math:`(N\_NODES)`, with int dtype, represents the indptr of CSR edge matrix. Default: ``None``. indices_backward (Tensor, optional): A tensor with shape :math:`(N\_EDGES)`, with int dtype, represents the indices backward of CSR edge matrix. Default: ``None``. indptr_backward (Tensor, optional): A tensor with shape :math:`(N\_NODES)`, with int dtype, represents the indptr backward of CSR edge matrix. Default: ``None``. csr (bool, optional): Is the graph is CSR type. Default: ``False``. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import mindspore as ms >>> from mindspore_gl import BatchedGraphField >>> n_nodes = 9 >>> n_edges = 11 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 2, 2], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], ms.int32) >>> graph_mask = ms.Tensor([1, 1, 0], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ... ver_subgraph_idx, edge_subgraph_idx, graph_mask) >>> print(batched_graph_field.get_batched_graph()) [Tensor(shape=[11], dtype=Int32, value= [0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8]), Tensor(shape=[11], dtype=Int32, value= [1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8]), 9, 11, Tensor(shape=[9], dtype=Int32, value= [0, 0, 0, 1, 1, 1, 1, 2, 2]), Tensor(shape=[11], dtype=Int32, value= [0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2]), Tensor(shape=[3], dtype=Int32, value= [1, 1, 0])] """ def __init__(self, src_idx=None, dst_idx=None, n_nodes=None, n_edges=None, ver_subgraph_idx=None, edge_subgraph_idx=None, graph_mask=None, indices=None, indptr=None, indices_backward=None, indptr_backward=None, csr=False): super().__init__(src_idx, dst_idx, n_nodes, n_edges, indices, indptr, indices_backward, indptr_backward, csr) self.n_nodes = n_nodes self.n_edges = n_edges self.ver_subgraph_idx = ver_subgraph_idx self.edge_subgraph_idx = edge_subgraph_idx self.graph_mask = graph_mask self.indices = indices self.indptr = indptr self.indices_backward = indices_backward self.indptr_backward = indptr_backward self.csr = csr if isinstance(self.n_nodes, ms.Tensor): if self.n_nodes.dtype == ms.bool_: raise TypeError(f"n_nodes should be an integer, but got {self.n_nodes.dtype}.") self.n_nodes = int(self.n_nodes.asnumpy()) if isinstance(self.n_nodes, bool): raise TypeError(f"n_nodes should be an integer, but got {type(self.n_nodes)}.") if not isinstance(self.n_nodes, int): raise TypeError(f"n_nodes should be an integer, but got {type(self.n_nodes)}.") if isinstance(self.n_edges, ms.Tensor): if self.n_edges.dtype == ms.bool_: raise TypeError(f"n_edges should be an integer, but got {self.n_edges.dtype}.") self.n_edges = int(self.n_edges.asnumpy()) if isinstance(self.n_edges, bool): raise TypeError(f"n_edges should be an integer, but got {type(self.n_edges)}.") if not isinstance(self.n_edges, int): raise TypeError(f"n_edges should be an integer, but got {type(self.n_edges)}.") if not isinstance(self.ver_subgraph_idx, ms.Tensor): raise TypeError(f"ver_subgraph_idx should be a tensor, but got {type(self.ver_subgraph_idx)}.") if not isinstance(self.ver_subgraph_idx.dtype, ms.Int): raise TypeError(f"ver_subgraph_idx should be an int datatype, but got {self.ver_subgraph_idx.dtype}.") if not isinstance(self.edge_subgraph_idx, ms.Tensor): raise TypeError(f"edge_subgraph_idx should be a tensor, but got {type(self.edge_subgraph_idx)}.") if not isinstance(self.edge_subgraph_idx.dtype, ms.Int): raise TypeError(f"edge_subgraph_idx should be an int datatype, but got {self.edge_subgraph_idx.dtype}.") if not isinstance(self.graph_mask, ms.Tensor): raise TypeError(f"graph_mask should be a tensor, but got {type(self.graph_mask)}.") if not isinstance(self.graph_mask.dtype, ms.Int): raise TypeError(f"graph_mask should be an int datatype, but got {self.graph_mask.dtype}.") if self.csr: if not isinstance(self.indices, ms.Tensor): raise TypeError(f"indices should be a tensor, but got {type(self.indices)}.") if not isinstance(self.indptr, ms.Tensor): raise TypeError(f"indptr should be a tensor, but got {type(self.indptr)}.") if not isinstance(self.indices_backward, ms.Tensor): raise TypeError(f"indices_backward should be a tensor, but got {type(self.indices_backward)}.") if not isinstance(self.indptr_backward, ms.Tensor): raise TypeError(f"indptr_backward should be a tensor, but got {type(self.indptr_backward)}.") else: if not isinstance(self.src_idx, ms.Tensor): raise TypeError(f"src_idx should be a tensor, but got {type(self.src_idx)}.") if not isinstance(self.dst_idx, ms.Tensor): raise TypeError(f"dst_idx should be a tensor, but got {type(self.dst_idx)}.")
[docs] def get_batched_graph(self): """ Get the batched Graph. Returns: List, a list of tensor, which should be used for construct function. """ batched_graph_field = self.get_graph() batched_graph_field.extend( [self.ver_subgraph_idx, self.edge_subgraph_idx, self.graph_mask]) return batched_graph_field
[docs]class HeterGraphField: r""" The data container for a heterogeneous graph. The edge information are stored in COO format. Args: src_idx (List[Tensor]): A list of tensor with shape :math:`(N\_EDGES)`, with int dtype, represents the source node index of COO edge matrix. dst_idx (List[Tensor]): A list of tensor with shape :math:`(N\_EDGES)`, with int dtype, represents the destination node index of COO edge matrix. n_nodes (List[int]): A list of integer, represent the nodes count of the graph. n_edges (List[int]): A list of integer, represent the edges count of the graph. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import mindspore as ms >>> from mindspore_gl import HeterGraphField >>> n_nodes = [9, 2] >>> n_edges = [11, 1] >>> src_idx = [ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32), ms.Tensor([0], ms.int32)] >>> dst_idx = [ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32), ms.Tensor([1], ms.int32)] >>> heter_graph_field = HeterGraphField(src_idx, dst_idx, n_nodes, n_edges) >>> print(heter_graph_field.get_heter_graph()) [[Tensor(shape=[11], dtype=Int32, value= [0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8]), Tensor(shape=[1], dtype=Int32, value= [0])], [Tensor(shape=[11], dtype=Int32, value= [1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8]), Tensor(shape=[1], dtype=Int32, value= [1])], [9, 2], [11, 1]] """ def __init__(self, src_idx, dst_idx, n_nodes, n_edges): self.src_idx = src_idx self.dst_idx = dst_idx self.n_nodes = n_nodes self.n_edges = n_edges if not isinstance(self.src_idx, list): raise TypeError(f"src_idx should be a list, but got {type(self.src_idx)}.") for per_src_idx in self.src_idx: if not isinstance(per_src_idx, ms.Tensor): raise TypeError(f"element of src_idx should be a tensor, but got {type(per_src_idx)}.") if not isinstance(per_src_idx.dtype, ms.Int): raise TypeError(f"element of src_idx should be an int datatype, but got {per_src_idx.dtype}.") if not isinstance(self.dst_idx, list): raise TypeError(f"dst_idx should be a list, but got {type(self.dst_idx)}.") for per_dst_idx in self.dst_idx: if not isinstance(per_dst_idx, ms.Tensor): raise TypeError(f"element of dst_idx should be a tensor, but got {type(per_dst_idx)}.") if not isinstance(per_dst_idx.dtype, ms.Int): raise TypeError(f"element of dst_idx should be an int datatype, but got {per_dst_idx.dtype}.") if not isinstance(self.n_nodes, list): raise TypeError(f"n_nodes should be a list, but got {type(self.n_nodes)}.") if not isinstance(self.n_edges, list): raise TypeError(f"n_edges should be a list, but got {type(self.n_edges)}.")
[docs] def get_heter_graph(self): """ Get the hetergenous Graph. Returns: List, a list of tensor list, which should be used for construct function. """ return [self.src_idx, self.dst_idx, self.n_nodes, self.n_edges]