# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""API"""
import mindspore as ms
class SrcVertex:
"""Source Vertex"""
def __init__(self):
raise NotImplementedError("SrcVertex Init: not implemented!")
class DstVertex:
"""Destination Vertex"""
def __init__(self, innb):
self._innbs = [innb]
self.in_edges = None
@property
def innbs(self):
"""
Return a list of src_vertex of current vertex.
Examples:
>>> for v in g.dst_vertex:
... v.h = g.sum([u.h for u in v.innbs])
"""
return self._innbs
@property
def inedges(self):
"""
Return a list of (src, edge) tuples for current vertex.
Examples:
>>> for v in g.dst_vertex:
... [u.a + e.b for u,e in v.inedges]
"""
if self.in_edges is None:
raise ValueError('in_edges value is None')
return self.in_edges
class Edge:
"""Edge"""
def __init__(self, src, dst):
dst.in_edges = [(src, self)]
self._src = src
self._dst = dst
[docs]class Graph:
"""
Graph class.
This is the class which should be annotated in the construct function for `GNNCell` class.
The last argument in the 'construct' function will be resolved into the 'mindspore_gl.Graph' whole graph class.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
>>> class SrcVertex(GNNCell):
... def construct(self, x, g: Graph):
... g.set_vertex_attr({"h": x})
... return [v.h for v in g.src_vertex]
>>> ret = SrcVertex()(node_feat, *graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[[1.0], [2.0], [1.0], [2.0], [0.0], [1.0], [2.0], [3.0], [1.0]]
"""
def __init__(self):
self._src_vertex = SrcVertex()
self._dst_vertex = [DstVertex(self._src_vertex)]
self._edge = [Edge(self._src_vertex, dst_v)
for dst_v in self._dst_vertex]
@property
def dst_vertex(self):
"""
Return a list of destination vertex that only supports iterate its `innbs` .
Returns:
- mindspore.Tensor, a list of destination vertex.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
>>> class DstVertex(GNNCell):
>>> def construct(self, x, g: Graph):
>>> g.set_vertex_attr({"h": x})
>>> return [v.h for v in g.dst_vertex]
>>> ret = DstVertex()(node_feat, *graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[[1.0], [2.0], [1.0], [2.0], [0.0], [1.0], [2.0], [3.0], [1.0]]
"""
return self._dst_vertex
@property
def src_vertex(self):
"""
Return a list of source vertex that only supports iterate with its `outnbs` .
Returns:
- mindspore.Tensor, a list of source vertex.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
>>> class SrcVertex(GNNCell):
... def construct(self, x, g: Graph):
... g.set_vertex_attr({"h": x})
... return [v.h for v in g.src_vertex]
>>> ret = SrcVertex()(node_feat, *graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[[1.0], [2.0], [1.0], [2.0], [0.0], [1.0], [2.0], [3.0], [1.0]]
"""
return self._src_vertex
@property
def src_idx(self):
r"""
A tensor with shape :math:`(N\_EDGES)`, represents the source node index of COO edge matrix.
Returns:
- mindspore.Tensor, a list of source vertex.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
>>> class SrcIdx(GNNCell):
... def construct(self, x, g: Graph):
... return g.src_idx
>>> ret = SrcIdx()(node_feat, *graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8]
"""
@property
def dst_idx(self):
r"""
A tensor with shape :math:`(N\_EDGES)`, represents the destination node index of COO edge matrix.
Returns:
- mindspore.Tensor, a list of destination vertex.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
>>> class DstIdx(GNNCell):
... def construct(self, x, g: Graph):
... return g.dst_idx
>>> ret = DstIdx()(node_feat, *graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8]
"""
@property
def n_nodes(self):
"""
An integer, represent the nodes count of the graph.
Returns:
- int, nodes numbers of the graph.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
>>> class NNode(GNNCell):
... def construct(self, x, g: Graph):
... return g.n_nodes
>>> ret = NNode()(node_feat, *graph_field.get_graph())
>>> print(ret)
9
"""
@property
def n_edges(self):
"""
An integer, represent the edges count of the graph.
Returns:
- int, edges numbers of the graph.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
>>> class NEdge(GNNCell):
... def construct(self, x, g: Graph):
... return g.n_edges
>>> ret = NEdge()(node_feat, *graph_field.get_graph())
>>> print(ret)
11
"""
[docs] def set_vertex_attr(self, feat_dict):
r"""
Set attributes for vertices in vertex-centric environment.
Keys will be attribute's name, values will be attributes' data.
Note:
set_vertex_attr is equals to set_src_attr + set_dst_attr.
Args:
feat_dict (Dict): key type: str, value type: recommend tensor of shape :math:`(N\_NODES, F)`, :math:`F` is
the dimension of the node feature.
Returns:
- mindspore.Tensor, the feature of vertex.
Raises:
TypeError: If `feat_dict` is not a Dict.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
...
>>> class TestSetVertexAttr(GNNCell):
... def construct(self, x, g: Graph):
... g.set_vertex_attr({"h": x})
... return [v.h for v in g.dst_vertex] * [u.h for u in g.src_vertex]
...
>>> ret = TestSetVertexAttr()(node_feat, *graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[[1.0], [4.0], [1.0], [4.0], [0.0], [1.0], [4.0], [9.0], [1.0]]
"""
[docs] def set_src_attr(self, feat_dict):
r"""
Set attributes for source vertices in vertex-centric environment.
Keys will be attribute's name, values will be attributes' data.
Args:
feat_dict (Dict): key type: str, value type: recommend tensor of
shape :math:`(N\_NODES, F)`, :math:`F` is the dimension of the node feature.
Returns:
- mindspore.Tensor, the feature of source vertex.
Raises:
TypeError: If `feat_dict` is not a Dict.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
...
>>> class TestSetSrcAttr(GNNCell):
... def construct(self, x, g: Graph):
... g.set_src_attr({"h": x})
... return [u.h for u in g.src_vertex]
...
>>> ret = TestSetSrcAttr()(node_feat, *graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[[1.0], [2.0], [1.0], [2.0], [0.0], [1.0], [2.0], [3.0], [1.0]]
"""
[docs] def set_dst_attr(self, feat_dict):
r"""
Set attributes for destination vetices in vertex-centric environment
Keys will be attribute's name, values will be attributes' data.
Args:
feat_dict (Dict): key type: str, value type: recommend tensor of
shape :math:`(N\_NODES, F)`, :math:`F` is the dimension of the node feature.
Returns:
- mindspore.Tensor, the feature of destination vertex.
Raises:
TypeError: If `feat_dict` is not a Dict.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
...
>>> class TestSetDstAttr(GNNCell):
... def construct(self, x, g: Graph):
... g.set_dst_attr({"h": x})
... return [v.h for v in g.dst_vertex]
...
>>> ret = TestSetDstAttr()(node_feat, *graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[[1.0], [2.0], [1.0], [2.0], [0.0], [1.0], [2.0], [3.0], [1.0]]
"""
[docs] def set_edge_attr(self, feat_dict):
r"""
Set attributes for edges in vertex-centric environment.
Keys will be attribute's name, values will be attributes' data.
Args:
feat_dict (Dict): key type: str, value type: recommend feature tensor
of shape :math:`(N\_EDGES, F)`, :math:`F` is the shape of the feature per edge.
Recommend the shape of value is :math:`(N\_EDGES, 1)` when the feature dimension is 1.
Returns:
- mindspore.Tensor, the feature of edges.
Raises:
TypeError: If `feat_dict` is not a Dict.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
>>> edge_feat = ms.Tensor([[1], [2], [1], [3], [1], [4], [1], [5], [1], [1], [1]], ms.float32)
...
>>> class TestSetEdgeAttr(GNNCell):
... def construct(self, nh, eh, g: Graph):
... g.set_vertex_attr({"nh": nh})
... g.set_edge_attr({"eh": eh})
... for v in g.dst_vertex:
... v.h = g.sum([u.nh * e.eh for u, e in v.inedges])
... return [v.h for v in g.dst_vertex]
...
>>> ret = TestSetEdgeAttr()(node_feat, edge_feat, *graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[[2.0], [2.0], [0.0], [0.0], [14.0], [6.0], [1.0], [0.0], [3.0]]
"""
[docs] def set_graph_attr(self, feat_dict):
"""
Set attributes for the whole graph in vertex-centric environment.
Keys will be attribute's name, values will be attributes' data.
Args:
feat_dict (Dict): key type: str, value type: recommend feature tensor for the whole graph.
Returns:
- mindspore.Tensor, the feature of graph.
Raises:
TypeError: If `feat_dict` is not a Dict.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> g_attr = ms.Tensor([[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]], ms.float32)
>>> v_attr = ms.Tensor([1.0, 1.0], ms.float32)
...
>>> class TestSetGraphAttr(GNNCell):
... def construct(self, vh, gh, g: Graph):
... g.set_graph_attr({"x": gh})
... g.set_vertex_attr({"h": vh})
... for v in g.dst_vertex:
... v.h = g.sum([u.h * g.x for u in v.innbs])
... return [v.h for v in g.dst_vertex]
...
>>> ret = TestSetGraphAttr()(v_attr, g_attr, *graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[[0.0, 1.0], [0.0, 2.0], [0.0, 0.0], [0.0, 0.0],
[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]
"""
[docs] def sum(self, neigh_feat):
r"""
Aggregating node features from their neighbour and generates a
node-level representation by aggregate function 'sum'.
Args:
neigh_feat (List[`SrcVertex` feature or `Edge` feature]): a list of `SrcVertex` or `Edge` attribute
represents the neighbour nodes or edges feature, with shape :math:`(N, F)`,
:math:`N` is the number of `SrcVertex` or `Edge`,
:math:`F` is the feature dimension of the `SrcVertex` or `Edge` attribute.
Returns:
- mindspore.Tensor, a tensor with shape :math:`(N, F)`, :math:`N` is the number of nodes of the graph,
:math:`F` is the feature dimension of the node.
Raises:
TypeError: If `neigh_feat` is not a list of `Edge` or `SrcVertex`.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
...
>>> class TestSum(GNNCell):
... def construct(self, x, g: Graph):
... g.set_vertex_attr({"x": x})
... for v in g.dst_vertex:
... v.h = g.sum([u.x for u in v.innbs])
... return [v.h for v in g.dst_vertex]
...
>>> ret = TestSum()(node_feat, *graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[[1.0], [2.0], [0.0], [0.0], [3.0], [2.0], [1.0], [0.0], [3.0]]
"""
[docs] def max(self, neigh_feat):
r"""
Aggregating node features from their neighbour and generates
a node-level representation by aggregate function 'max'.
Args:
neigh_feat (List[`SrcVertex` feature or `Edge` feature]): a list of `SrcVertex` or `Edge` attributes
represents the neighbour nodes or edges feature, with shape :math:`(N, F)`,
:math:`N` is the number of `SrcVertex` or `Edge`,
:math:`F` is the feature dimension of the `SrcVertex` or `Edge` attribute.
Returns:
- mindspore.Tensor, a tensor with shape :math:`(N, F)`, :math:`N` is the number of nodes of the graph,
:math:`F` is the feature dimension of the node.
Raises:
TypeError: If `neigh_feat` is not a list of `Edge` or `SrcVertex`.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
...
>>> class TestMax(GNNCell):
... def construct(self, x, g: Graph):
... g.set_vertex_attr({"x": x})
... for v in g.dst_vertex:
... v.h = g.max([u.x for u in v.innbs])
... return [v.h for v in g.dst_vertex]
...
>>> ret = TestMax()(node_feat, *graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[[1.0], [1.0], [0.0], [0.0], [2.0], [2.0], [1.0], [0.0], [1.0]]
"""
[docs] def min(self, neigh_feat):
r"""
Aggregating node features from their neighbour and generates
a node-level representation by aggregate function 'min'.
Args:
neigh_feat (List[`SrcVertex` feature or `Edge` feature]): a list of `SrcVertex` or `Edge` attributes
represents the neighbour nodes or edges feature, with shape :math:`(N, F)`,
:math:`N` is the number of `SrcVertex` or `Edge`,
:math:`F` is the feature dimension of the `SrcVertex` or `Edge` attribute.
Returns:
- mindspore.Tensor, a tensor with shape :math:`(N, F)`, :math:`N` is the number of nodes of the graph,
:math:`F` is the feature dimension of the node.
Raises:
TypeError: If `neigh_feat` is not a list of `Edge` or `SrcVertex`.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
...
>>> class TestMin(GNNCell):
... def construct(self, x, g: Graph):
... g.set_vertex_attr({"x": x})
... for v in g.dst_vertex:
... v.h = g.min([u.x for u in v.innbs])
... return [v.h for v in g.dst_vertex]
...
>>> ret = TestMin()(node_feat, *graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]
"""
[docs] def avg(self, neigh_feat):
r"""
Aggregating node features from their neighbour and generates a
node-level representation by aggregate function 'avg'.
Args:
neigh_feat (List[`SrcVertex` feature or `Edge` feature]): a list of `SrcVertex` or `Edge` attributes
represents the neighbour nodes or edges feature, with shape :math:`(N, F)`,
:math:`N` is the number of `SrcVertex` or `Edge`,
:math:`F` is the feature dimension of the `SrcVertex` or `Edge` attribute.
Returns:
- mindspore.Tensor, a tensor with shape :math:`(N, F)`, :math:`N` is the number of nodes of the graph,
:math:`F` is the feature dimension of the node.
Raises:
TypeError: If `neigh_feat` is not a list of `Edge` or `SrcVertex`.
Examples:
>>> import math
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
...
>>> class TestAvg(GNNCell):
... def construct(self, x, g: Graph):
... g.set_vertex_attr({"x": x})
... for v in g.dst_vertex:
... v.h = g.avg([u.x for u in v.innbs])
... return [v.h for v in g.dst_vertex]
...
>>> ret = TestAvg()(node_feat, *graph_field.get_graph()).asnumpy().tolist()
>>> NAN = 1e9
>>> for row in ret:
... if math.isnan(row[0]):
... row[0] = NAN
>>> print(ret)
[[1.0], [1.0], [1000000000.0], [0.0], [1.5], [2.0], [1.0], [1000000000.0], [1.0]]
"""
[docs] def dot(self, feat_x, feat_y):
r"""
Dot mul operation for two node Tensors.
Args:
feat_x (`SrcVertex` feature or `DstVertex` feature): the arttribute of `SrcVertex` or `DstVertex`
represent feature tensor of graph nodes with shape :math:`(N, F)`,
:math:`N` is the number of nodes of the graph,
:math:`F` is the feature dimension of the node.
feat_y (`SrcVertex` feature or `DstVertex` feature): the arttribute of `SrcVertex` or `DstVertex`
represent feature tensor of graph nodes with shape :math:`(N, F)`,
:math:`N` is the number of nodes of the graph,
:math:`F` is the feature dimension of the node.
Returns:
- mindspore.Tensor, a tensor with shape :math:`(N, 1)`, `N` is the number of nodes of the graph.
Raises:
TypeError: If `feat_x` is not in the 'mul' operation support types [Tensor,Number,List,Tuple].
TypeError: If `feat_y` is not in the 'mul' operation support types [Tensor,Number,List,Tuple].
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
...
>>> class TestDot(GNNCell):
... def construct(self, x, g: Graph):
... g.set_vertex_attr({"src": x, "dst": x})
... for v in g.dst_vertex:
... v.h = [g.dot(v.src, u.dst) for u in v.innbs]
... return [v.h for v in g.dst_vertex]
...
>>> ret = TestDot()(node_feat, *graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[[2.0], [1.0], [2.0], [2.0], [0.0], [0.0], [2.0], [0.0], [1.0], [1.0], [1.0]]
"""
[docs] def topk_nodes(self, node_feat, k, sortby=None):
r"""
Return a graph-level representation by a graph-wise top-k
on node features.
If `sortby` is set to ``None``, the function would perform top-k
on all dimensions independently.
Note:
The value participated in the sort by axis (all value if `sortby` is
``None``) should be greater than zero.
Due to the reason that we create zero value for padding
and they may cover the features.
Args:
node_feat (Tensor): A tensor represent the node feature,
with shape :math:`(N\_NODES, F)`. :math:`F` is the dimension of the node feature.
k (int): Represent how many nodes for top-k.
sortby (int): Sort according to which feature. If is ``None``,
all features are sorted independently. Default is ``None``.
Returns:
- **topk_output** (Tensor) - a tensor with shape :math:`(B, K, F)`,
where :math:`B` is the batch size of the input graph.
:math:`K` is the input 'k', :math:`F` is the feature size.
- **topk_indices** (Tensor), - a tensor with shape
:math:`(B, K)` ( :math:`(B, K, F)` if `sortby` is set to ``None``),
where :math:`B` is the batch size of the input graph,
:math:`F` is the feature size.
Raises:
TypeError: If `node_feat` is not a Tensor.
TypeError: If `k` is not an int.
ValueError: If `sortby` is not an int.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import GraphField, Graph
>>> from mindspore_gl.nn import GNNCell
>>> node_feat = ms.Tensor([
... [1, 2, 3, 4],
... [2, 4, 1, 3],
... [1, 3, 2, 4],
... [9, 7, 5, 8],
... [8, 7, 6, 5],
... [8, 6, 4, 6],
... [1, 2, 1, 1],
... ], ms.float32)
...
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
...
>>> class TestTopkNodes(GNNCell):
... def construct(self, x, g: Graph):
... return g.topk_nodes(x, 2, 1)
...
>>> output, indices = TestTopkNodes()(node_feat, *graph_field.get_graph())
>>> output = output.asnumpy().tolist()
>>> indices = indices.asnumpy().tolist()
>>> print(output)
[[9.0, 7.0, 5.0, 8.0], [8.0, 7.0, 6.0, 5.0]]
>>> print(indices)
[3, 4]
"""
[docs] def topk_edges(self, node_feat, k, sortby=None):
r"""
Return a graph-level representation by a graph-wise top-k
on node features.
If `sortby` is set to ``None``, the function would perform top-k
on all dimensions independently.
Args:
node_feat (Tensor): A tensor represent the node feature,
with shape :math:`(N\_NODES, F)`. :math:`F` is the dimension of the node feature.
k (int): Represent how many nodes for top-k.
sortby (int): Sort according to which feature. If is ``None``,
all features are sorted independently. Default is ``None``.
Note:
The value participated in the sort by axis (all value if `sortby` is
``None``) should be greater than zero.
Due to the reason that we create zero value for padding
and they may cover the features.
Returns:
- **topk_output** (Tensor) - a tensor with shape :math:`(B, K, F)`,
where :math:`B` is the batch size of the input graph.
:math:`K` is the input 'k', :math:`F` is the feature size.
- **topk_indices** (Tensor), - a tensor with shape
:math:`(B, K)` ( :math:`(B, K, F)` if sortby is set to None),
where :math:`B` is the batch size of the input graph,
:math:`F` is the feature size.
Raises:
TypeError: If `node_feat` is not a Tensor.
TypeError: If `k` is not an int.
ValueError: If `sortby` is not an int.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import GraphField, Graph
>>> from mindspore_gl.nn import GNNCell
>>> node_feat = ms.Tensor([
... [1, 2, 3, 4],
... [2, 4, 1, 3],
... [1, 3, 2, 4],
... [9, 7, 5, 8],
... [8, 7, 6, 5],
... [8, 6, 4, 6],
... [1, 2, 1, 1],
... ], ms.float32)
...
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
...
>>> class TestTopkEdges(GNNCell):
... def construct(self, x, g: Graph):
... return g.topk_edges(x, 2, 1)
...
>>> output, indices = TestTopkEdges()(node_feat, *graph_field.get_graph())
>>> output = output.asnumpy().tolist()
>>> indices = indices.asnumpy().tolist()
>>> print(output)
[[9.0, 7.0, 5.0, 8.0], [8.0, 7.0, 6.0, 5.0]]
>>> print(indices)
[3, 4]
"""
[docs] def in_degree(self):
r"""
Get the in degree of each node in a graph.
Returns:
Tensor, a tensor with shape :math:`(N, 1)`,
represent the in degree of each node, :math:`N` is the number of nodes of the graph.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
...
>>> class TestInDegree(GNNCell):
... def construct(self, g: Graph):
... return g.in_degree()
...
>>> ret = TestInDegree()(*graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[[1], [2], [0], [1], [2], [1], [1], [0], [3]]
"""
[docs] def out_degree(self):
r"""
Get the out degree of each node in a graph.
Returns:
Tensor, a tensor with shape :math:`(N, 1)`,
represent the out degree of each node, :math:`N` is the number of nodes of the graph.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
...
>>> class TestOutDegree(GNNCell):
... def construct(self, g: Graph):
... return g.out_degree()
...
>>> ret = TestOutDegree()(*graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[[1], [0], [2], [1], [1], [2], [1], [0], [3]]
"""
[docs] def adj_to_dense(self):
r"""
Get the dense adjacent matrix of the graph.
Note:
Due to system limitations, only COO format are supported for build graph and dense format
adjacency matrix can be generated.
Returns:
Tensor, a tensor with shape :math:`(N, N)`, :math:`N` is the number of nodes of the graph.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, GraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
...
>>> class TestAdjToDense(GNNCell):
... def construct(self, g: Graph):
... return g.adj_to_dense()
...
>>> ret = TestAdjToDense()(*graph_field.get_graph()).asnumpy().tolist()
>>> print(ret)
[[0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 3]]
"""
[docs]class BatchedGraph(Graph):
"""
Batched Graph class.
This is the class which should be annotated in the construct function for `GNNCell` class.
The last argument in the 'construct' function will be resolved into the 'mindspore_gl.BatchedGraph' batched
graph class.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx =>>> ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 2, 2], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], ms.int32)
>>> graph_mask = ms.Tensor([1, 1, 0], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
>>> class SrcIdx(GNNCell):
... def construct(self, bg: BatchedGraph):
... return bg.src_idx
>>> ret = SrcIdx()(*batched_graph_field.get_batched_graph()).asnumpy().tolist()
>>> print(ret)
[0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8]
"""
@property
def ver_subgraph_idx(self):
r"""
Indicates each node belonging to which subgraph.
Returns:
Tensor, A tensor with shape :math:`(N)`, :math:`N` is the number of the nodes of the graph.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> node_feat = ms.Tensor([
... # graph 1:
... [1, 2, 3, 4],
... [2, 4, 1, 3],
... [1, 3, 2, 4],
... # graph 2:
... [9, 7, 5, 8],
... [8, 7, 6, 5],
... [8, 6, 4, 6],
... [1, 2, 1, 1],
... ], ms.float32)
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32)
>>> graph_mask = ms.Tensor([1, 1], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class VerSubgraphIdx(GNNCell):
... def construct(self, x, bg: BatchedGraph):
... return bg.ver_subgraph_idx
...
>>> ret = VerSubgraphIdx()(node_feat, *batched_graph_field.get_batched_graph())
>>> print(ret)
[0 0 0 1 1 1 1]
"""
@property
def edge_subgraph_idx(self):
r"""
Indicates each edge belonging to which subgraph.
Returns:
Tensor, A tensor with shape :math:`(N\_EDGES,)`.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> node_feat = ms.Tensor([
... # graph 1:
... [1, 2, 3, 4],
... [2, 4, 1, 3],
... [1, 3, 2, 4],
... # graph 2:
... [9, 7, 5, 8],
... [8, 7, 6, 5],
... [8, 6, 4, 6],
... [1, 2, 1, 1],
... ], ms.float32)
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32)
>>> graph_mask = ms.Tensor([1, 1], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class EdgeSubgraphIdx(GNNCell):
... def construct(self, x, bg: BatchedGraph):
... return bg.edge_subgraph_idx
...
>>> ret = EdgeSubgraphIdx()(node_feat, *batched_graph_field.get_batched_graph())
>>> print(ret)
# [0 0 0 1 1 1 1 1]
"""
@property
def graph_mask(self):
r"""
Indicates whether the subgraph is exist.
Returns:
Tensor, A tensor with shape :math:`(N\_GRAPHS,)`.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> node_feat = ms.Tensor([
... # graph 1:
... [1, 2, 3, 4],
... [2, 4, 1, 3],
... [1, 3, 2, 4],
... # graph 2:
... [9, 7, 5, 8],
... [8, 7, 6, 5],
... [8, 6, 4, 6],
... [1, 2, 1, 1],
... ], ms.float32)
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32)
>>> graph_mask = ms.Tensor([1, 1], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class GraphMask(GNNCell):
... def construct(self, x, bg: BatchedGraph):
... return bg.graph_mask
...
>>> ret = GraphMask()(node_feat, *batched_graph_field.get_batched_graph())
>>> print(ret)
[1 1]
"""
@property
def n_graphs(self):
"""
Represent the graphs count of the batched graph.
Returns:
int, graph numbers.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> node_feat = ms.Tensor([
... # graph 1:
... [1, 2, 3, 4],
... [2, 4, 1, 3],
... [1, 3, 2, 4],
... # graph 2:
... [9, 7, 5, 8],
... [8, 7, 6, 5],
... [8, 6, 4, 6],
... [1, 2, 1, 1],
... ], ms.float32)
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32)
>>> graph_mask = ms.Tensor([1, 1], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class NGraphs(GNNCell):
... def construct(self, x, bg: BatchedGraph):
... return bg.n_graphs
...
>>> ret = NGraphs()(node_feat, *batched_graph_field.get_batched_graph())
>>> print(ret)
2
"""
[docs] def node_mask(self):
r"""
Get the node mask after padding. In the mask, 1 represent the node exists and 0 represent the node is
generated by padding.
The node mask is calculated according to the `graph_mask` and
`ver_subgraph_idx`.
Returns:
Tensor, a tensor with shape :math:`(N\_NODES, )`. Inside tensor, 1 represent the node exists and
0 represent the node is generated by padding.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 2, 2], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], ms.int32)
>>> graph_mask = ms.Tensor([1, 1, 0], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class TestNodeMask(GNNCell):
... def construct(self, bg: BatchedGraph):
... return bg.node_mask()
...
>>> ret = TestNodeMask()(*batched_graph_field.get_batched_graph()).asnumpy().tolist()
>>> print(ret)
[1, 1, 1, 1, 1, 1, 1, 0, 0]
"""
[docs] def edge_mask(self):
r"""
Get the edge mask after padding. In the mask, 1 represent the edge exists and 0 represent the edge is
generated by padding.
The edge mask is calculated according to the `graph_mask` and
`edge_subgraph_idx`.
Returns:
Tensor, a tensor with shape :math:`(N\_EDGES,)`.
Inside tensor, 1 represent the edge exists and 0 represent the edge is generated by padding.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 2, 2], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], ms.int32)
>>> graph_mask = ms.Tensor([1, 1, 0], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class TestEdgeMask(GNNCell):
... def construct(self, bg: BatchedGraph):
... return bg.edge_mask()
...
>>> ret = TestEdgeMask()(*batched_graph_field.get_batched_graph()).asnumpy().tolist()
>>> print(ret)
[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]
"""
[docs] def num_of_nodes(self):
r"""
Get the number of nodes of each subgraph in a batched graph.
Note:
After padding operation, a not existing subgraph is created
and all not existing nodes created belong to this subgraph.
If you want to clear it, you need to multiply it
with a `graph_mask` manually.
Returns:
Tensor, a tensor with shape :math:`(N\_GRAPHS, 1)` represent each subgraph contains how many nodes.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 2, 2], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], ms.int32)
>>> graph_mask = ms.Tensor([1, 1, 0], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class TestNumOfNodes(GNNCell):
... def construct(self, bg: BatchedGraph):
... return bg.num_of_nodes()
...
>>> ret = TestNumOfNodes()(*batched_graph_field.get_batched_graph()).asnumpy().tolist()
>>> print(ret)
[[3], [4], [2]]
"""
[docs] def num_of_edges(self):
r"""
Get the number of edges of each subgraph in a batched graph.
Note:
After padding operation, a not existing subgraph is created
and all not existing edges created belong to this subgraph.
If you want to clear it, you need to multiply it
with a graph mask manually.
Returns:
Tensor, a tensor with shape :math:`(N\_GRAPHS, 1)`,
represent each subgraph contains how many edges.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 2, 2], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], ms.int32)
>>> graph_mask = ms.Tensor([1, 1, 0], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class TestNumOfEdges(GNNCell):
... def construct(self, bg: BatchedGraph):
... return bg.num_of_edges()
...
>>> ret = TestNumOfEdges()(*batched_graph_field.get_batched_graph()).asnumpy().tolist()
>>> print(ret)
[[3], [5], [3]]
"""
[docs] def sum_nodes(self, node_feat):
r"""
Aggregating node features and generates a graph-level representation
by aggregation type 'sum'.
The node_feat should have shape :math:`(N\_NODES, F)`,
`sum_nodes` operation will aggregate the nodes
feat according to `ver_subgraph_idx`.
The output tensor will have a shape :math:`(N\_GRAPHS, F)`.
:math:`F` is the dimension of the node feature.
Args:
node_feat (Tensor): a tensor represents the node feature,
with shape :math:`(N\_NODES, F)`, :math:`F` is the dimension of the node node feature.
Returns:
Tensor, a tensor with shape :math:`(N\_GRAPHS, F)`, :math:`F` is the dimension of the node feature.
Raises:
TypeError: If `node_feat` is not a Tensor which is the type of operation 'shape'.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> node_feat = ms.Tensor([
... # graph 1:
... [1, 2, 3, 4],
... [2, 4, 1, 3],
... [1, 3, 2, 4],
... # graph 2:
... [9, 7, 5, 8],
... [8, 7, 6, 5],
... [8, 6, 4, 6],
... [1, 2, 1, 1],
... ], ms.float32)
...
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32)
>>> graph_mask = ms.Tensor([1, 1], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class TestSumNodes(GNNCell):
... def construct(self, x, bg: BatchedGraph):
... return bg.sum_nodes(x)
...
>>> ret = TestSumNodes()(node_feat, *batched_graph_field.get_batched_graph()).asnumpy().tolist()
>>> print(ret)
[[4.0, 9.0, 6.0, 11.0], [26.0, 22.0, 16.0, 20.0]]
"""
[docs] def sum_edges(self, edge_feat):
r"""
Aggregating edge features and generates a graph-level representation
by aggregation type 'sum'.
The edge_feat should have shape :math:`(N\_EDGES, F)`.
`sum_edges` operation will aggregate the edge_feat.
according to `edge_subgraph_idx`.
The output tensor will have a shape :math:`(N\_GRAPHS, F)`.
:math:`F` is the dimension of the edge feature.
Args:
edge_feat (Tensor): a tensor represents the edge feature,
with shape :math:`(N\_EDGES, F)`. :math:`F` is the dimension of the edge attribute.
Returns:
Tensor, a tensor with shape :math:`(N\_GRAPHS, F)`. :math:`F` is the dimension of the edge attribute.
Raises:
TypeError: If `edge_feat` is not a Tensor which is the type of operation 'shape'.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> edge_feat = ms.Tensor([
... # graph 1:
... [1, 2, 3, 4],
... [2, 4, 1, 3],
... [1, 3, 2, 4],
... # graph 2:
... [9, 7, 5, 8],
... [8, 7, 6, 5],
... [8, 6, 4, 6],
... [1, 2, 1, 1],
... [3, 2, 3, 3],
... ], ms.float32)
...
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32)
>>> graph_mask = ms.Tensor([1, 1], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class TestSumEdges(GNNCell):
... def construct(self, x, bg: BatchedGraph):
... return bg.sum_edges(x)
...
>>> ret = TestSumEdges()(edge_feat, *batched_graph_field.get_batched_graph()).asnumpy().tolist()
>>> print(ret)
[[4.0, 9.0, 6.0, 11.0], [29.0, 24.0, 19.0, 23.0]]
"""
[docs] def max_nodes(self, node_feat):
r"""
Aggregating node features and generates a graph-level
representation by aggregation type 'max'.
The node_feat should have shape :math:`(N\_NODES, F)`.
`max_nodes` operation will aggregate the node_feat
according to ver_subgraph_idx.
The output tensor will have a shape :math:`(N\_GRAPHS, F)`.
:math:`F` is the dimension of the node feature.
Args:
node_feat (Tensor): a tensor represents the node feature,
with shape :math:`(N\_NODES, F)`. :math:`F` is the dimension of the node feature.
Returns:
Tensor, a tensor with shape :math:`(N\_GRAPHS, F)`, :math:`F` is the dimension of the node feature.
Raises:
TypeError: If `node_feat` is not a Tensor which is the type of operation 'shape'.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> node_feat = ms.Tensor([
... # graph 1:
... [1, 2, 3, 4],
... [2, 4, 1, 3],
... [1, 3, 2, 4],
... # graph 2:
... [9, 7, 5, 8],
... [8, 7, 6, 5],
... [8, 6, 4, 6],
... [1, 2, 1, 1],
... ], ms.float32)
...
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32)
>>> graph_mask = ms.Tensor([1, 1], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class TestMaxNodes(GNNCell):
... def construct(self, x, bg: BatchedGraph):
... return bg.max_nodes(x)
...
>>> ret = TestMaxNodes()(node_feat, *batched_graph_field.get_batched_graph()).asnumpy().tolist()
>>> print(ret)
[[2.0, 4.0, 3.0, 4.0], [9.0, 7.0, 6.0, 8.0]]
"""
[docs] def max_edges(self, edge_feat):
r"""
Aggregating edge features and generates a graph-level
representation by aggregation type 'max'.
The edge_feat should have shape :math:`(N\_EDGES, F)`.
Max_edges operation will aggregate the edge_feat
according to edge_subgraph_idx.
The output tensor will have a shape :math:`(N\_GRAPHS, F)`.
:math:`F` is the dimension of the edge feature.
Args:
edge_feat (Tensor): a tensor represents the edge feature,
with shape :math:`(N\_EDGES, F)`. :math:`F` is the dimension of the edge feature.
Returns:
Tensor, a tensor with shape :math:`(N\_GRAPHS, F)`. :math:`F` is the dimension of the edge feature.
Raises:
TypeError: If `edge_feat` is not a Tensor which is the type of operation 'shape'.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> edge_feat = ms.Tensor([
... # graph 1:
... [1, 2, 3, 4],
... [2, 4, 1, 3],
... [1, 3, 2, 4],
... # graph 2:
... [9, 7, 5, 8],
... [8, 7, 6, 5],
... [8, 6, 4, 6],
... [1, 2, 1, 1],
... [3, 2, 3, 3],
... ], ms.float32)
...
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32)
>>> graph_mask = ms.Tensor([1, 1], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class TestMaxEdges(GNNCell):
... def construct(self, x, bg: BatchedGraph):
... return bg.max_edges(x)
...
>>> ret = TestMaxEdges()(edge_feat, *batched_graph_field.get_batched_graph()).asnumpy().tolist()
>>> print(ret)
[[2.0, 4.0, 3.0, 4.0], [9.0, 7.0, 6.0, 8.0]]
"""
[docs] def avg_nodes(self, node_feat):
r"""
Aggregating node features and generates a graph-level
representation by aggregation type 'avg'.
The node_feat should have shape :math:`(N\_NODES, F)`.
Avg_nodes operation will aggregate the node_feat
according to ver_subgraph_idx.
The output tensor will have a shape :math:`(N\_GRAPHS, F)`.
:math:`F` is the dimension of the node feature.
Args:
node_feat (Tensor): a tensor represents the node feature,
with shape :math:`(N\_NODES, F)`.
:math:`F` is the dimension of the node feature.
Returns:
Tensor, a tensor with shape :math:`(N\_GRAPHS, F)`. :math:`F` is the dimension of the node feature.
Raises:
TypeError: If `node_feat` is not a Tensor which is the type of operation.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> node_feat = ms.Tensor([
... # graph 1:
... [1, 2, 3, 4],
... [2, 4, 1, 3],
... [1, 3, 2, 4],
... # graph 2:
... [9, 7, 5, 8],
... [8, 7, 6, 5],
... [8, 6, 4, 6],
... [1, 2, 1, 1],
... ], ms.float32)
...
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32)
>>> graph_mask = ms.Tensor([1, 1], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class TestAvgNodes(GNNCell):
... def construct(self, x, bg: BatchedGraph):
... return bg.avg_nodes(x)
...
>>> ret = TestAvgNodes()(node_feat, *batched_graph_field.get_batched_graph()).asnumpy().tolist()
>>> print(ret)
[[1.3333333730697632, 3.0, 2.0, 3.6666667461395264], [6.5, 5.5, 4.0, 5.0]]
"""
[docs] def avg_edges(self, edge_feat):
r"""
Aggregating edge features and generates a graph-level
representation by aggregation type 'avg'.
The edge_feat should have shape :math:`(N\_EDGES, F)`.
Avg_edges operation will aggregate the edge_feat
according to edge_subgraph_idx.
The output tensor will have a shape :math:`(N\_GRAPHS, F)`.
:math:`F` is the dimension of the edge feature.
Args:
edge_feat (Tensor): a tensor represents the edge feature,
with shape :math:`(N\_EDGES, F)`. :math:`F` is the dimension of the edge feature.
Returns:
Tensor, a tensor with shape :math:`(N\_GRAPHS, F)`,
:math:`F` is the dimension of the edge feature.
Raises:
TypeError: If `edge_feat` is not a Tensor which is the type of operation 'shape'.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> edge_feat = ms.Tensor([
... # graph 1:
... [1, 2, 3, 4],
... [2, 4, 1, 3],
... [1, 3, 2, 4],
... # graph 2:
... [9, 7, 5, 8],
... [8, 7, 6, 5],
... [8, 6, 4, 6],
... [1, 2, 1, 1],
... [3, 2, 3, 3],
... ], ms.float32)
...
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32)
>>> graph_mask = ms.Tensor([1, 1], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class TestAvgEdges(GNNCell):
... def construct(self, x, bg: BatchedGraph):
... return bg.avg_edges(x)
...
>>> ret = TestAvgEdges()(edge_feat, *batched_graph_field.get_batched_graph()).asnumpy().tolist()
>>> print(ret)
[[1.3333333730697632, 3.0, 2.0, 3.6666667461395264],
[5.800000190734863, 4.800000190734863, 3.799999952316284, 4.599999904632568]]
"""
[docs] def softmax_nodes(self, node_feat):
r"""
Perform graph-wise softmax on the node features.
For each node :math:`v\in\mathcal{V}` and its feature :math:`x_v`,
calculate its normalized feature as follows:
.. math::
z_v = \frac{\exp(x_v)}{\sum_{u\in\mathcal{V}}\exp(x_u)}
Each subgraph computes softmax independently.
The result tensor has the same shape as the original node feature.
Args:
node_feat (Tensor): a tensor represent the node feature,
with shape :math:`(N\_NODES, F)`, :math:`F` is the feature size.
Returns:
Tensor, a tensor with shape :math:`(N\_NODES, F)`, :math:`F` is the feature size.
Raises:
TypeError: If `node_feat` is not a Tensor.
Examples:
>>> import mindspore as ms
>>> import numpy as np
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> node_feat = ms.Tensor([
... # graph 1:
... [1, 2, 3, 4],
... [2, 4, 1, 3],
... [1, 3, 2, 4],
... # graph 2:
... [9, 7, 5, 8],
... [8, 7, 6, 5],
... [8, 6, 4, 6],
... [1, 2, 1, 1],
... ], ms.float32)
...
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32)
>>> graph_mask = ms.Tensor([1, 1], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class TestSoftmaxNodes(GNNCell):
... def construct(self, x, bg: BatchedGraph):
... return bg.softmax_nodes(x)
...
>>> ret = TestSoftmaxNodes()(node_feat, *batched_graph_field.get_batched_graph()).asnumpy()
>>> print(np.array2string(ret, formatter={'float_kind':'{0:.5f}'.format}))
[[0.21194, 0.09003, 0.66524, 0.42232],
[0.57612, 0.66524, 0.09003, 0.15536],
[0.21194, 0.24473, 0.24473, 0.42232],
[0.57601, 0.42112, 0.24364, 0.84315],
[0.21190, 0.42112, 0.66227, 0.04198],
[0.21190, 0.15492, 0.08963, 0.11411],
[0.00019, 0.00284, 0.00446, 0.00077]]
"""
[docs] def softmax_edges(self, edge_feat):
r"""
Perform graph-wise softmax on the edge features.
For each edge :math:`v\in\mathcal{V}` and its feature :math:`x_v`,
calculate its normalized feature as follows:
.. math::
z_v = \frac{\exp(x_v)}{\sum_{u\in\mathcal{V}}\exp(x_u)}
Each subgraph computes softmax independently.
The result tensor has the same shape as the original edge feature.
Args:
edge_feat (Tensor): a tensor represent the edge feature,
with shape :math:`(N\_EDGES, F)`, :math:`F` is the feature size.
Returns:
Tensor, a tensor with shape :math:`(N\_EDGES, F)`, :math:`F` is the feature size.
Raises:
TypeError: If `edge_feat` is not a Tensor.
Examples:
>>> import mindspore as ms
>>> import numpy as np
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> edge_feat = ms.Tensor([
... # graph 1:
... [1, 2, 3, 4],
... [2, 4, 1, 3],
... [1, 3, 2, 4],
... # graph 2:
... [9, 7, 5, 8],
... [8, 7, 6, 5],
... [8, 6, 4, 6],
... [1, 2, 1, 1],
... [3, 2, 3, 3],
... ], ms.float32)
...
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32)
>>> graph_mask = ms.Tensor([1, 1], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class TestSoftmaxEdges(GNNCell):
... def construct(self, x, bg: BatchedGraph):
... return bg.softmax_edges(x)
...
>>> ret = TestSoftmaxEdges()(edge_feat, *batched_graph_field.get_batched_graph()).asnumpy()
>>> print(np.array2string(ret, formatter={'float_kind':'{0:.5f}'.format}))
[[0.21194, 0.09003, 0.66524, 0.42232],
[0.57612, 0.66524, 0.09003, 0.15536],
[0.21194, 0.24473, 0.24473, 0.42232],
[0.57518, 0.41993, 0.23586, 0.83838],
[0.21160, 0.41993, 0.64113, 0.04174],
[0.21160, 0.15448, 0.08677, 0.11346],
[0.00019, 0.00283, 0.00432, 0.00076],
[0.00143, 0.00283, 0.03192, 0.00565]]
"""
[docs] def broadcast_nodes(self, graph_feat):
r"""
Broadcast graph-level features to node-level representation.
Args:
graph_feat (Tensor): a tensor represent the graph feature,
with shape :math:`(N\_GRAPHS, F)`, :math:`F` is the feature size.
Returns:
Tensor, a tensor with shape :math:`(N\_NODES, F)`, :math:`F` is the feature size.
Raises:
TypeError: If `graph_feat` is not a Tensor.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> node_feat = ms.Tensor([
... # graph 1:
... [1, 2, 3, 4],
... [2, 4, 1, 3],
... [1, 3, 2, 4],
... # graph 2:
... [9, 7, 5, 8],
... [8, 7, 6, 5],
... [8, 6, 4, 6],
... [1, 2, 1, 1],
... ], ms.float32)
...
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32)
>>> graph_mask = ms.Tensor([1, 1], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class TestBroadCastNodes(GNNCell):
... def construct(self, x, bg: BatchedGraph):
... ret = bg.max_nodes(x)
... return bg.broadcast_nodes(ret)
...
>>> ret = TestBroadCastNodes()(node_feat, *batched_graph_field.get_batched_graph()).asnumpy().tolist()
>>> print(ret)
[[2.0, 4.0, 3.0, 4.0], [2.0, 4.0, 3.0, 4.0], [2.0, 4.0, 3.0, 4.0],
[9.0, 7.0, 6.0, 8.0], [9.0, 7.0, 6.0, 8.0], [9.0, 7.0, 6.0, 8.0], [9.0, 7.0, 6.0, 8.0]]
"""
[docs] def broadcast_edges(self, graph_feat):
r"""
Broadcast graph-level features to edge-level representation.
Args:
graph_feat (Tensor): a tensor represent the graph feature, with shape :math:`(N\_GRAPHS, F)`, :math:`F` is
the feature size.
Returns:
Tensor, a tensor with shape :math:`(N\_EDGES, F)`, :math:`F` is the feature size.
Raises:
TypeError: If `graph_feat` is not a Tensor.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraph, BatchedGraphField
>>> from mindspore_gl.nn import GNNCell
>>> edge_feat = ms.Tensor([
... # graph 1:
... [1, 2, 3, 4],
... [2, 4, 1, 3],
... [1, 3, 2, 4],
... # graph 2:
... [9, 7, 5, 8],
... [8, 7, 6, 5],
... [8, 6, 4, 6],
... [1, 2, 1, 1],
... [3, 2, 3, 3],
... ], ms.float32)
...
>>> n_nodes = 7
>>> n_edges = 8
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32)
>>> graph_mask = ms.Tensor([1, 1], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
...
>>> class TestBroadCastEdges(GNNCell):
... def construct(self, x, bg: BatchedGraph):
... ret = bg.max_edges(x)
... return bg.broadcast_edges(ret)
...
>>> ret = TestBroadCastEdges()(edge_feat, *batched_graph_field.get_batched_graph()).asnumpy().tolist()
>>> print(ret)
[[2.0, 4.0, 3.0, 4.0], [2.0, 4.0, 3.0, 4.0], [2.0, 4.0, 3.0, 4.0],
[9.0, 7.0, 6.0, 8.0], [9.0, 7.0, 6.0, 8.0], [9.0, 7.0, 6.0, 8.0],
[9.0, 7.0, 6.0, 8.0], [9.0, 7.0, 6.0, 8.0]]
"""
[docs]class HeterGraph:
"""
The heterogeneous Graph.
This is the class which should be annotated in the construct function for `GNNCell` class.
The last argument in the 'construct' function will be resolved into the 'mindspore_gl.HeterGraph' heterogeneous
class.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, HeterGraph, HeterGraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = [9, 2]
>>> n_edges = [11, 1]
>>> src_idx = [ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32), ms.Tensor([0], ms.int32)]
>>> dst_idx = [ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32), ms.Tensor([1], ms.int32)]
>>> heter_graph_field = HeterGraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
>>> class SrcIdx(GNNCell):
... def construct(self, bg: HeterGraph):
... return bg.src_idx
>>> ret = SrcIdx()(*heter_graph_field.get_heter_graph())
>>> print(ret)
[Tensor(shape=[11], dtype=Int32, value= [0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8]),
Tensor(shape=[1], dtype=Int32, value= [0])]
"""
@property
def src_idx(self):
r"""
A tensor with shape :math:`(N\_EDGES)`, represents the source node index of COO edge matrix.
Returns:
- List[Tensor], a list of source vertex.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, HeterGraph, HeterGraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = [9, 2]
>>> n_edges = [11, 1]
>>> src_idx = [ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32), ms.Tensor([0], ms.int32)]
>>> dst_idx = [ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32), ms.Tensor([1], ms.int32)]
>>> heter_graph_field = HeterGraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
...
>>> class SrcIdx(GNNCell):
... def construct(self, x, bg: HeterGraph):
... return bg.src_idx
>>> ret = SrcIdx()(node_feat, *heter_graph_field.get_heter_graph())
>>> print(ret)
[Tensor(shape=[11], dtype=Int32, value= [0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8]),
Tensor(shape=[1], dtype=Int32, value= [0])]
"""
@property
def dst_idx(self):
r"""
A tensor with shape :math:`(N\_EDGES)`, represents the destination node index of COO edge matrix.
Returns:
- List[Tensor], a list of destination vertex.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, HeterGraph, HeterGraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = [9, 2]
>>> n_edges = [11, 1]
>>> src_idx = [ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32), ms.Tensor([0], ms.int32)]
>>> dst_idx = [ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32), ms.Tensor([1], ms.int32)]
>>> heter_graph_field = HeterGraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
...
>>> class DstIdx(GNNCell):
... def construct(self, x, bg: HeterGraph):
... return bg.dst_idx
>>> ret = DstIdx()(node_feat, *heter_graph_field.get_heter_graph())
>>> print(ret)
[Tensor(shape=[11], dtype=Int32, value= [1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8]),
Tensor(shape=[1], dtype=Int32, value= [1])]
"""
@property
def n_nodes(self):
"""
A list of integer, represent the nodes count of the graph.
Returns:
- List, a list of nodes numbers of the graph.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, HeterGraph, HeterGraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = [9, 2]
>>> n_edges = [11, 1]
>>> src_idx = [ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32), ms.Tensor([0], ms.int32)]
>>> dst_idx = [ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32), ms.Tensor([1], ms.int32)]
>>> heter_graph_field = HeterGraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
...
>>> class NNodes(GNNCell):
... def construct(self, x, bg: HeterGraph):
... return bg.n_nodes
>>> ret = NNodes()(node_feat, *heter_graph_field.get_heter_graph())
>>> print(ret)
[9, 2]
"""
@property
def n_edges(self):
"""
A list of integer, represent the edges count of the graph.
Returns:
- List[int], a list edges numbers of the graph.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, HeterGraph, HeterGraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = [9, 2]
>>> n_edges = [11, 1]
>>> src_idx = [ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32), ms.Tensor([0], ms.int32)]
>>> dst_idx = [ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32), ms.Tensor([1], ms.int32)]
>>> heter_graph_field = HeterGraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
...
>>> class NEdges(GNNCell):
... def construct(self, x, bg: HeterGraph):
... return bg.n_edges
>>> ret = NEdges()(node_feat, *heter_graph_field.get_heter_graph())
>>> print(ret)
[11, 1]
"""
def __init__(self):
pass
[docs] def get_homo_graph(self, etype):
"""
Get the specific nodes, edges for etype.
Args:
etype (int): The edge type.
Returns:
List[Tensor], a homo graph.
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import Graph, HeterGraph, HeterGraphField
>>> from mindspore_gl.nn import GNNCell
>>> n_nodes = [9, 2]
>>> n_edges = [11, 1]
>>> src_idx = [ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32), ms.Tensor([0], ms.int32)]
>>> dst_idx = [ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32), ms.Tensor([1], ms.int32)]
>>> heter_graph_field = HeterGraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> node_feat = ms.Tensor([[1], [2], [1], [2], [0], [1], [2], [3], [1]], ms.float32)
...
>>> class TestSum(GNNCell):
... def construct(self, x, g: Graph):
... g.set_vertex_attr({"x": x})
... for v in g.dst_vertex:
... v.h = g.sum([u.x for u in v.innbs])
... return [v.h for v in g.dst_vertex]
...
>>> class TestHeterGraph(GNNCell):
... def __init__(self):
... super().__init__()
... self.sum = TestSum()
...
... def construct(self, x, hg: HeterGraph):
... return self.sum(x, *hg.get_homo_graph(0))
...
>>> ret = TestHeterGraph()(node_feat, *heter_graph_field.get_heter_graph()).asnumpy().tolist()
>>> print(ret)
[[1.0], [2.0], [0.0], [0.0], [3.0], [2.0], [1.0], [0.0], [3.0]]
"""
[docs]class GraphField:
r"""
The data container for a graph.
The edge information are stored in COO format.
Args:
src_idx (Tensor, optional): A tensor with shape :math:`(N\_EDGES)`, with int dtype,
represents the source node index of COO edge matrix. Default: ``None``.
dst_idx (Tensor, optional): A tensor with shape :math:`(N\_EDGES)`, with int dtype,
represents the destination node index of COO edge matrix. Default: ``None``.
n_nodes (int, optional): An integer, represent the nodes count of the graph. Default: ``None``.
n_edges (int, optional): An integer, represent the edges count of the graph. Default: ``None``.
indices (Tensor, optional): A tensor with shape :math:`(N\_EDGES)`, with int dtype,
represents the indices of CSR edge matrix. Default: ``None``.
indptr (Tensor, optional): A tensor with shape :math:`(N\_NODES)`, with int dtype,
represents the indptr of CSR edge matrix. Default: ``None``.
indices_backward (Tensor, optional): A tensor with shape :math:`(N\_EDGES)`, with int dtype,
represents the indices backward of CSR edge matrix. Default: ``None``.
indptr_backward (Tensor, optional): A tensor with shape :math:`(N\_NODES)`, with int dtype,
represents the indptr backward of CSR edge matrix. Default: ``None``.
csr (bool, optional): Is the matrix CSR type. Default: ``False``.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import GraphField
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> print(graph_field.get_graph())
[Tensor(shape=[11], dtype=Int32, value= [0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8]),
Tensor(shape=[11], dtype=Int32, value= [1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8]), 9, 11]
"""
def __init__(self, src_idx=None, dst_idx=None, n_nodes=None, n_edges=None, indices=None,
indptr=None, indices_backward=None, indptr_backward=None, csr=False):
self.csr = csr
self.n_nodes = n_nodes
self.n_edges = n_edges
if isinstance(self.n_nodes, ms.Tensor):
if self.n_nodes.dtype == ms.bool_:
raise TypeError(f"n_nodes should be an integer, but got {self.n_nodes.dtype}.")
self.n_nodes = int(self.n_nodes.asnumpy())
if isinstance(self.n_nodes, bool):
raise TypeError(f"n_nodes should be an integer, but got {type(self.n_nodes)}.")
if not isinstance(self.n_nodes, int):
raise TypeError(f"n_nodes should be an integer, but got {type(self.n_nodes)}.")
if isinstance(self.n_edges, ms.Tensor):
if self.n_edges.dtype == ms.bool_:
raise TypeError(f"n_edges should be an integer, but got {self.n_edges.dtype}.")
self.n_edges = int(self.n_edges.asnumpy())
if isinstance(self.n_edges, bool):
raise TypeError(f"n_edges should be an integer, but got {type(self.n_edges)}.")
if not isinstance(self.n_edges, int):
raise TypeError(f"n_edges should be an integer, but got {type(self.n_edges)}.")
if not csr:
self.src_idx = src_idx
self.dst_idx = dst_idx
if not isinstance(self.src_idx, ms.Tensor):
raise TypeError(f"src_idx should be a tensor, but got {type(self.src_idx)}.")
if not isinstance(self.src_idx.dtype, ms.Int):
raise TypeError(f"src_idx should be an int datatype, but got {self.src_idx.dtype}.")
if not isinstance(self.dst_idx, ms.Tensor):
raise TypeError(f"dst_idx should be a tensor, but got {type(self.dst_idx)}.")
if not isinstance(self.dst_idx.dtype, ms.Int):
raise TypeError(f"dst_idx should be an int datatype, but got {self.dst_idx.dtype}.")
else:
self.indices = indices
self.indptr = indptr
self.indices_backward = indices_backward
self.indptr_backward = indptr_backward
if not isinstance(self.indices, ms.Tensor):
raise TypeError(f"indices should be a tensor, but got {type(self.indices)}.")
if not isinstance(self.indices.dtype, ms.Int):
raise TypeError(f"indices should be an int datatype, but got {self.indices.dtype}.")
if not isinstance(self.indptr, ms.Tensor):
raise TypeError(f"indptr should be a tensor, but got {type(self.indptr)}.")
if not isinstance(self.indptr.dtype, ms.Int):
raise TypeError(f"indptr should be an int datatype, but got {self.indptr.dtype}.")
if not isinstance(self.indices_backward, ms.Tensor):
raise TypeError(f"indices_backward should be a tensor, but got {type(self.indices_backward)}.")
if not isinstance(self.indices_backward.dtype, ms.Int):
raise TypeError(f"indices_backward should be an int datatype, but got {self.indices_backward.dtype}.")
if not isinstance(self.indptr_backward, ms.Tensor):
raise TypeError(f"indptr_backward should be a tensor, but got {type(self.indptr_backward)}.")
if not isinstance(self.indptr_backward.dtype, ms.Int):
raise TypeError(f"indptr_backward should be an int datatype, but got {self.indptr_backward.dtype}.")
[docs] def get_graph(self):
"""
Get the Graph.
Returns:
List, a list of tensor, which should be
used for construct function.
"""
if self.csr:
return [self.indices, self.indptr, self.n_nodes, self.n_edges, self.indices_backward, self.indptr_backward]
return [self.src_idx, self.dst_idx, self.n_nodes, self.n_edges]
[docs]class BatchedGraphField(GraphField):
r"""
The data container for a batched graph.
The edge information are stored in COO format.
Args:
src_idx (Tensor, optional): A tensor with shape :math:`(N\_EDGES)`, with int dtype,
represents the source node index of COO edge matrix. Default: ``None``.
dst_idx (Tensor, optional): A tensor with shape :math:`(N\_EDGES)`, with int dtype,
represents the destination node index of COO edge matrix. Default: ``None``.
n_nodes (int, optional): An integer, represent the nodes count of the graph. Default: ``None``.
n_edges (int, optional): An integer, represent the edges count of the graph. Default: ``None``.
ver_subgraph_idx (Tensor, optional): A tensor with shape :math:`(N\_NODES)`, with int dtype,
indicates each node belonging to which subgraph. Default: ``None``.
edge_subgraph_idx (Tensor, optional): A tensor with shape :math:`(N\_EDGES,)`, with int dtype,
indicates each edge belonging to which subgraph. Default: ``None``.
graph_mask (Tensor, optional): A tensor with shape :math:`(N\_GRAPHS,)`, with int dtype,
indicates whether the subgraph is exist. Default: ``None``.
indices (Tensor, optional): A tensor with shape :math:`(N\_EDGES)`, with int dtype,
represents the indices of CSR edge matrix. Default: ``None``.
indptr (Tensor, optional): A tensor with shape :math:`(N\_NODES)`, with int dtype,
represents the indptr of CSR edge matrix. Default: ``None``.
indices_backward (Tensor, optional): A tensor with shape :math:`(N\_EDGES)`, with int dtype,
represents the indices backward of CSR edge matrix. Default: ``None``.
indptr_backward (Tensor, optional): A tensor with shape :math:`(N\_NODES)`, with int dtype,
represents the indptr backward of CSR edge matrix. Default: ``None``.
csr (bool, optional): Is the graph is CSR type. Default: ``False``.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import BatchedGraphField
>>> n_nodes = 9
>>> n_edges = 11
>>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32)
>>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32)
>>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 2, 2], ms.int32)
>>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], ms.int32)
>>> graph_mask = ms.Tensor([1, 1, 0], ms.int32)
>>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges,
... ver_subgraph_idx, edge_subgraph_idx, graph_mask)
>>> print(batched_graph_field.get_batched_graph())
[Tensor(shape=[11], dtype=Int32, value= [0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8]),
Tensor(shape=[11], dtype=Int32, value= [1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8]), 9, 11,
Tensor(shape=[9], dtype=Int32, value= [0, 0, 0, 1, 1, 1, 1, 2, 2]),
Tensor(shape=[11], dtype=Int32, value= [0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2]),
Tensor(shape=[3], dtype=Int32, value= [1, 1, 0])]
"""
def __init__(self, src_idx=None, dst_idx=None, n_nodes=None, n_edges=None, ver_subgraph_idx=None,
edge_subgraph_idx=None, graph_mask=None, indices=None, indptr=None, indices_backward=None,
indptr_backward=None, csr=False):
super().__init__(src_idx, dst_idx, n_nodes, n_edges, indices, indptr, indices_backward, indptr_backward, csr)
self.n_nodes = n_nodes
self.n_edges = n_edges
self.ver_subgraph_idx = ver_subgraph_idx
self.edge_subgraph_idx = edge_subgraph_idx
self.graph_mask = graph_mask
self.indices = indices
self.indptr = indptr
self.indices_backward = indices_backward
self.indptr_backward = indptr_backward
self.csr = csr
if isinstance(self.n_nodes, ms.Tensor):
if self.n_nodes.dtype == ms.bool_:
raise TypeError(f"n_nodes should be an integer, but got {self.n_nodes.dtype}.")
self.n_nodes = int(self.n_nodes.asnumpy())
if isinstance(self.n_nodes, bool):
raise TypeError(f"n_nodes should be an integer, but got {type(self.n_nodes)}.")
if not isinstance(self.n_nodes, int):
raise TypeError(f"n_nodes should be an integer, but got {type(self.n_nodes)}.")
if isinstance(self.n_edges, ms.Tensor):
if self.n_edges.dtype == ms.bool_:
raise TypeError(f"n_edges should be an integer, but got {self.n_edges.dtype}.")
self.n_edges = int(self.n_edges.asnumpy())
if isinstance(self.n_edges, bool):
raise TypeError(f"n_edges should be an integer, but got {type(self.n_edges)}.")
if not isinstance(self.n_edges, int):
raise TypeError(f"n_edges should be an integer, but got {type(self.n_edges)}.")
if not isinstance(self.ver_subgraph_idx, ms.Tensor):
raise TypeError(f"ver_subgraph_idx should be a tensor, but got {type(self.ver_subgraph_idx)}.")
if not isinstance(self.ver_subgraph_idx.dtype, ms.Int):
raise TypeError(f"ver_subgraph_idx should be an int datatype, but got {self.ver_subgraph_idx.dtype}.")
if not isinstance(self.edge_subgraph_idx, ms.Tensor):
raise TypeError(f"edge_subgraph_idx should be a tensor, but got {type(self.edge_subgraph_idx)}.")
if not isinstance(self.edge_subgraph_idx.dtype, ms.Int):
raise TypeError(f"edge_subgraph_idx should be an int datatype, but got {self.edge_subgraph_idx.dtype}.")
if not isinstance(self.graph_mask, ms.Tensor):
raise TypeError(f"graph_mask should be a tensor, but got {type(self.graph_mask)}.")
if not isinstance(self.graph_mask.dtype, ms.Int):
raise TypeError(f"graph_mask should be an int datatype, but got {self.graph_mask.dtype}.")
if self.csr:
if not isinstance(self.indices, ms.Tensor):
raise TypeError(f"indices should be a tensor, but got {type(self.indices)}.")
if not isinstance(self.indptr, ms.Tensor):
raise TypeError(f"indptr should be a tensor, but got {type(self.indptr)}.")
if not isinstance(self.indices_backward, ms.Tensor):
raise TypeError(f"indices_backward should be a tensor, but got {type(self.indices_backward)}.")
if not isinstance(self.indptr_backward, ms.Tensor):
raise TypeError(f"indptr_backward should be a tensor, but got {type(self.indptr_backward)}.")
else:
if not isinstance(self.src_idx, ms.Tensor):
raise TypeError(f"src_idx should be a tensor, but got {type(self.src_idx)}.")
if not isinstance(self.dst_idx, ms.Tensor):
raise TypeError(f"dst_idx should be a tensor, but got {type(self.dst_idx)}.")
[docs] def get_batched_graph(self):
"""
Get the batched Graph.
Returns:
List, a list of tensor, which should
be used for construct function.
"""
batched_graph_field = self.get_graph()
batched_graph_field.extend(
[self.ver_subgraph_idx,
self.edge_subgraph_idx,
self.graph_mask])
return batched_graph_field
[docs]class HeterGraphField:
r"""
The data container for a heterogeneous graph.
The edge information are stored in COO format.
Args:
src_idx (List[Tensor]): A list of tensor with shape :math:`(N\_EDGES)`, with int dtype,
represents the source node index of COO edge matrix.
dst_idx (List[Tensor]): A list of tensor with shape :math:`(N\_EDGES)`, with int dtype,
represents the destination node index of COO edge matrix.
n_nodes (List[int]): A list of integer, represent the nodes count of the graph.
n_edges (List[int]): A list of integer, represent the edges count of the graph.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import mindspore as ms
>>> from mindspore_gl import HeterGraphField
>>> n_nodes = [9, 2]
>>> n_edges = [11, 1]
>>> src_idx = [ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8], ms.int32), ms.Tensor([0], ms.int32)]
>>> dst_idx = [ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8], ms.int32), ms.Tensor([1], ms.int32)]
>>> heter_graph_field = HeterGraphField(src_idx, dst_idx, n_nodes, n_edges)
>>> print(heter_graph_field.get_heter_graph())
[[Tensor(shape=[11], dtype=Int32, value= [0, 2, 2, 3, 4, 5, 5, 6, 8, 8, 8]),
Tensor(shape=[1], dtype=Int32, value= [0])],
[Tensor(shape=[11], dtype=Int32, value= [1, 0, 1, 5, 3, 4, 6, 4, 8, 8, 8]),
Tensor(shape=[1], dtype=Int32, value= [1])], [9, 2], [11, 1]]
"""
def __init__(self, src_idx, dst_idx, n_nodes, n_edges):
self.src_idx = src_idx
self.dst_idx = dst_idx
self.n_nodes = n_nodes
self.n_edges = n_edges
if not isinstance(self.src_idx, list):
raise TypeError(f"src_idx should be a list, but got {type(self.src_idx)}.")
for per_src_idx in self.src_idx:
if not isinstance(per_src_idx, ms.Tensor):
raise TypeError(f"element of src_idx should be a tensor, but got {type(per_src_idx)}.")
if not isinstance(per_src_idx.dtype, ms.Int):
raise TypeError(f"element of src_idx should be an int datatype, but got {per_src_idx.dtype}.")
if not isinstance(self.dst_idx, list):
raise TypeError(f"dst_idx should be a list, but got {type(self.dst_idx)}.")
for per_dst_idx in self.dst_idx:
if not isinstance(per_dst_idx, ms.Tensor):
raise TypeError(f"element of dst_idx should be a tensor, but got {type(per_dst_idx)}.")
if not isinstance(per_dst_idx.dtype, ms.Int):
raise TypeError(f"element of dst_idx should be an int datatype, but got {per_dst_idx.dtype}.")
if not isinstance(self.n_nodes, list):
raise TypeError(f"n_nodes should be a list, but got {type(self.n_nodes)}.")
if not isinstance(self.n_edges, list):
raise TypeError(f"n_edges should be a list, but got {type(self.n_edges)}.")
[docs] def get_heter_graph(self):
"""
Get the hetergenous Graph.
Returns:
List, a list of tensor list, which should be used for construct
function.
"""
return [self.src_idx, self.dst_idx, self.n_nodes, self.n_edges]