Source code for mindspore_gl.nn.glob.weightandsum

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Weight And Sum Layer"""
import mindspore as ms
from mindspore_gl import BatchedGraph
from .. import GNNCell


[docs]class WeightAndSum(GNNCell): """ Calculates importance weights for nodes and performs weighted sums. Args: in_feat_size (int): input feature size. Inputs: - **x** (Tensor) - The input node features to be updated. The shape is :math:`(N, D)` where :math:`N` is the number of nodes, and :math:`D` is the feature size of nodes. - **g** (BatchedGraph) - The input graph. Outputs: - **x** (Tensor) - The output representation for graphs. The shape is :math:`(2, D_{out})` where :math:`D_{out}` is the feature size of nodes Raises: TypeError: If `in_feat_size` is not an int. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import numpy as np >>> import mindspore as ms >>> from mindspore_gl.nn import WeightAndSum >>> from mindspore_gl import BatchedGraphField >>> n_nodes = 7 >>> n_edges = 8 >>> src_idx = ms.Tensor([0, 2, 2, 3, 4, 5, 5, 6], ms.int32) >>> dst_idx = ms.Tensor([1, 0, 1, 5, 3, 4, 6, 4], ms.int32) >>> ver_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1], ms.int32) >>> edge_subgraph_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 1, 1], ms.int32) >>> graph_mask = ms.Tensor([1, 1], ms.int32) >>> batched_graph_field = BatchedGraphField(src_idx, dst_idx, n_nodes, n_edges, ver_subgraph_idx, ... edge_subgraph_idx, graph_mask) >>> node_feat = np.random.random((n_nodes, 4)) >>> node_feat = ms.Tensor(node_feat, ms.float32) >>> net = WeightAndSum(4) >>> ret = net(node_feat, *batched_graph_field.get_batched_graph()) >>> print(ret.shape) (2, 4) """ def __init__(self, in_feat_size): super().__init__() if in_feat_size <= 0 or not isinstance(in_feat_size, int): raise ValueError("in_feat_size must be positive int") self.in_feat_size = in_feat_size self.atom_weighting = ms.nn.SequentialCell( ms.nn.Dense(in_feat_size, 1), ms.nn.Sigmoid() ) # pylint: disable=arguments-differ def construct(self, x, g: BatchedGraph): """ Construct function for WeightAndSum. """ w = self.atom_weighting(x) return g.sum_nodes(x * w)