Source code for mindspore_gl.nn.conv.sageconv

# Copyright 2021 Huawei Technologies Co., Ltd
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""SAGEConv Layer."""
import math
import mindspore as ms
from mindspore import nn
from mindspore.common.initializer import XavierUniform
from mindspore_gl import Graph
from .. import GNNCell

[docs]class SAGEConv(GNNCell): r""" GraphSAGE Layer. From the paper `Inductive Representation Learning on Large Graphs <https://arxiv.org/pdf/1706.02216.pdf>`_ . .. math:: h_{\mathcal{N}(i)}^{(l+1)} = \mathrm{aggregate} \left(\{h_{j}^{l}, \forall j \in \mathcal{N}(i) \}\right) \\ h_{i}^{(l+1)} = \sigma \left(W \cdot \mathrm{concat} (h_{i}^{l}, h_{\mathcal{N}(i)}^{l+1}) \right)\\ h_{i}^{(l+1)} = \mathrm{norm}(h_{i}^{l}) If weights are provided on each edge, the weighted graph convolution is defined as: .. math:: h_{\mathcal{N}(i)}^{(l+1)} = \mathrm{aggregate} \left(\{e_{ji} h_{j}^{l}, \forall j \in \mathcal{N}(i) \}\right) Args: in_feat_size (int): Input node feature size. out_feat_size (int): Output node feature size. aggregator_type (str, optional): Type of aggregator, should in ``'pool'``, ``'lstm'`` and ``'mean'``. Default: ``'pool'``. bias (bool, optional): Whether use bias. Default: ``True``. norm (Cell, optional): Normalization function Cell. Default: ``None``. activation (Cell, optional): Activation function Cell. Default: ``None``. Inputs: - **x** (Tensor) - The input node features. The shape is :math:`(N,D\_in)` where :math:`N` is the number of nodes and :math:`D\_in` could be of any shape. - **edge_weight** (Tensor) - Edge weights. The shape is :math:`(N\_e,)` where :math:`N\_e` is the number of edges. - **g** (Graph) - The input graph. Outputs: - Tensor, the output feature of shape :math:`(N,D\_out)`. where :math:`N` is the number of nodes and :math:`D\_out` could be of any shape. Raises: TypeError: If `in_feat_size` or `out_feat_size` is not an int. TypeError: If `bias` is not a bool. KeyError: if `aggregator` type is not ``'pool'``, ``'lstm'`` or ``'mean'``. TypeError: if `activation` type is not `mindspore.nn.Cell`. TypeError: if `norm` type is not `mindspore.nn.Cell`. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import mindspore as ms >>> from mindspore import nn >>> from mindspore.numpy import ones >>> from mindspore_gl.nn import SAGEConv >>> from mindspore_gl import GraphField >>> n_nodes = 4 >>> n_edges = 7 >>> feat_size = 4 >>> src_idx = ms.Tensor([0, 1, 1, 2, 2, 3, 3], ms.int32) >>> dst_idx = ms.Tensor([0, 0, 2, 1, 3, 0, 1], ms.int32) >>> ones = ms.ops.Ones() >>> feat = ones((n_nodes, feat_size), ms.float32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> sageconv = SAGEConv(in_feat_size=4, out_feat_size=2, activation=nn.ReLU()) >>> edge_weight = ones((n_edges, 1), ms.float32) >>> res = sageconv(feat, edge_weight, *graph_field.get_graph()) >>> print(res.shape) (4,2) """ def __init__(self, in_feat_size: int, out_feat_size: int, aggregator_type: str = "pool", bias=True, norm=None, activation=None): super().__init__() if (not isinstance(in_feat_size, int)) or in_feat_size <= 0: raise ValueError("in_feat_size must be positive int") if (not isinstance(out_feat_size, int)) or out_feat_size <= 0: raise ValueError("out_feat_size must be positive int") if not isinstance(bias, bool): raise ValueError("bias must be bool") if aggregator_type not in ["mean", "pool", "lstm"]: raise TypeError("aggregator_type must in ['mean', 'pool', 'lstm']") self.in_feat_size = in_feat_size self.out_feat_size = out_feat_size self.agg_type = aggregator_type if activation: if not isinstance(activation, nn.Cell): raise TypeError("activation type should be mindspore.nn.Cell") if norm: if not isinstance(norm, nn.Cell): raise TypeError("norm type should be mindspore.nn.Cell") self.in_feat_size = in_feat_size self.out_feat_size = out_feat_size self.agg_type = aggregator_type self.norm = norm self.activation = activation self.dense_neigh = ms.nn.Dense(self.in_feat_size, self.out_feat_size, has_bias=False, weight_init=XavierUniform(math.sqrt(2))) if bias: self.bias = ms.Parameter(ms.ops.Zeros()(self.out_feat_size, ms.float32)) else: self.bias = None if self.agg_type == "pool": self.fc_pool = ms.nn.Dense(self.in_feat_size, self.in_feat_size) elif self.agg_type == "lstm": self.lstm = ms.nn.LSTM(self.in_feat_size, self.in_feat_size, batch_first=True) elif self.agg_type != 'mean': raise KeyError("Unknown aggregator type {}".format_map(self.agg_type)) self.dense_self = ms.nn.Dense(self.in_feat_size, self.out_feat_size, has_bias=False, weight_init=XavierUniform(math.sqrt(2))) # pylint: disable=arguments-differ def construct(self, node_feat, edge_weight, g: Graph): """ Construct function for SAGEConv. """ g.set_vertex_attr({"h": node_feat}) if self.agg_type == "mean" and self.in_feat_size > self.out_feat_size: g.set_vertex_attr({"h": self.dense_neigh(node_feat)}) if self.agg_type == "pool": g.set_vertex_attr({"h": ms.ops.ReLU()(self.fc_pool(node_feat))}) for v in g.dst_vertex: if edge_weight is not None: g.set_edge_attr({"w": edge_weight}) neigh_feat = [s.h * e.w for s, e in v.inedges] else: neigh_feat = [u.h for u in v.innbs] if self.agg_type == "mean": v.h = g.avg(neigh_feat) if self.in_feat_size <= self.out_feat_size: v.h = self.dense_neigh(v.h) if self.agg_type == "pool": v.h = g.max(neigh_feat) v.h = self.dense_neigh(v.h) if self.agg_type == "lstm": init_h = (ms.ops.Zeros()((1, g.n_edges, self.in_feat_size), ms.float32), ms.ops.Zeros()((1, g.n_edges, self.in_feat_size), ms.float32)) _, (v.h, _) = self.lstm(neigh_feat, init_h) v.h = self.dense_neigh(ms.ops.Squeeze()(v.h, 0)) out_feat = [v.h for v in g.dst_vertex] ret = self.dense_self(node_feat) + out_feat if self.bias is not None: ret = ret + self.bias if self.activation is not None: ret = self.activation(ret) if self.norm is not None: ret = self.norm(self.ret) return ret