Source code for mindspore_gl.nn.conv.nnconv

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""NNConv Layer"""
import math
import mindspore as ms
from mindspore.common.initializer import XavierUniform
from mindspore import nn
from mindspore_gl import Graph
from .. import GNNCell


[docs]class NNConv(GNNCell): r""" Graph convolutional layer. From the paper `Neural Message Passing for Quantum Chemistry <https://arxiv.org/pdf/1704.01212.pdf>`_ . .. math:: h_{i}^{l+1} = h_{i}^{l} + \mathrm{aggregate}\left(\left\{ f_\Theta (e_{ij}) \cdot h_j^{l}, j\in \mathcal{N}(i) \right\}\right) Where :math:`f_\Theta` is a function with learnable parameters. Args: in_feat_size (int): Input node feature size. out_feat_size (int): Output node feature size. edge_embed (mindspore.nn.Cell): Edge embedding function Cell. aggregator_type (str, optional): Type of aggregator, should be ``'sum'``. Default: ``'sum'``. residual (bool, optional): Whether use residual. Default: ``False``. bias (bool, optional): Whether use bias. Default: ``True``. Inputs: - **x** (Tensor) - The input node features. The shape is :math:`(N,D\_in)` where :math:`N` is the number of nodes and :math:`D\_in` could be of any shape. - **edge_feat** (Tensor) - Edge featutes. The shape is :math:`(N\_e,F\_e)` where :math:`N\_e` is the number of edges and :math:`F\_e` is the number of edge features. - **g** (Graph) - The input graph. Outputs: - Tensor, the output feature of shape :math:`(N,D\_out)` where :math:`N` is the number of nodes and :math:`D\_out` could be of any shape. Raises: TypeError: if `edge_embed` type is not `mindspore.nn.Cell` or `aggregator_type` is not ``'sum'``. TypeError: If `in_feat_size` or `out_feat_size` is not an int. TypeError: If `residual` or `bias` is not a bool. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import mindspore as ms >>> from mindspore_gl.nn import NNConv >>> from mindspore_gl import GraphField >>> n_nodes = 4 >>> n_edges = 7 >>> node_feat_size = 7 >>> edge_feat_size = 4 >>> src_idx = ms.Tensor([0, 1, 1, 2, 2, 3, 3], ms.int32) >>> dst_idx = ms.Tensor([0, 0, 2, 1, 3, 0, 1], ms.int32) >>> ones = ms.ops.Ones() >>> node_feat = ones((n_nodes, node_feat_size), ms.float32) >>> edge_feat = ones((n_edges, edge_feat_size), ms.float32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> edge_func = ms.nn.Dense(edge_feat_size, 2) >>> nnconv = NNConv(in_feat_size=node_feat_size, out_feat_size=2, edge_embed=edge_func) >>> res = nnconv(node_feat, edge_feat, *graph_field.get_graph()) >>> print(res.shape) (4, 2) """ def __init__(self, in_feat_size: int, out_feat_size: int, edge_embed, aggregator_type: str = "sum", residual=False, bias=True): super().__init__() if (not isinstance(in_feat_size, int)) or in_feat_size <= 0: raise ValueError("in_feat_size must be positive int") if (not isinstance(out_feat_size, int)) or out_feat_size <= 0: raise ValueError("out_feat_size must be positive int") if not isinstance(bias, bool): raise ValueError("bias must be bool") if not isinstance(residual, bool): raise ValueError("residual must be bool") if edge_embed: if not isinstance(edge_embed, nn.Cell): raise TypeError("edge_embed type should be mindspore.nn.Cell") if aggregator_type != "sum": raise TypeError("Don't support aggregator type other than sum.") self.edge_embed = edge_embed self.agg_type = aggregator_type self.in_feat_size = in_feat_size self.out_feat_size = out_feat_size self.res_dense = None if residual: if in_feat_size != out_feat_size: self.res_dense = ms.nn.Dense(in_feat_size, out_feat_size, weight_init=XavierUniform(math.sqrt(2))) self.bias = None if bias: self.bias = ms.Parameter(ms.ops.Zeros()((out_feat_size), ms.float32)) # pylint: disable=arguments-differ def construct(self, x, edge_feat, g: Graph): """ Construct function for NNConv. """ g.set_vertex_attr({"h": ms.ops.ExpandDims()(x, -1)}) g.set_edge_attr( {"g": ms.ops.Reshape()(self.edge_embed(edge_feat), (-1, self.in_feat_size, self.out_feat_size))}) for v in g.dst_vertex: e = [s.h * e.g for s, e in v.inedges] v.rt = g.sum(e) v.rt = ms.ops.ReduceSum()(v.rt, 1) if self.res_dense is not None: v.rt = v.rt + self.res_dense(v.h) if self.bias is not None: v.rt = v.rt + self.bias return [v.rt for v in g.dst_vertex]