Source code for mindspore_gl.nn.conv.dotgatconv

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""DOTGATConv Layer"""
import mindspore as ms
from mindspore_gl import Graph
from .. import GNNCell


[docs]class DOTGATConv(GNNCell): r""" Applying a dot product version of self-attention in GAT. From the paper `Graph Attention Network <https://arxiv.org/pdf/1710.10903.pdf>`_ . .. math:: h_i^{(l+1)} = \sum_{j\in \mathcal{N}(i)} \alpha_{i, j} h_j^{(l)} :math:`\alpha_{i, j}` represents the attention score between node :math:`i` and node :math:`j`. .. math:: \alpha_{i, j} = \mathrm{softmax_i}(e_{ij}^{l}) \\ e_{ij}^{l} = ({W_i^{(l)} h_i^{(l)}})^T \cdot {W_j^{(l)} h_j^{(l)}} Args: in_feat_size (int): Input node feature size. out_feat_size (int): Output node feature size. num_heads (int): Number of attention head used in GAT. bias (bool, optional): Whether to use bias. Default: ``False``. Inputs: - **x** (Tensor): The input node features. The shape is :math:`(N,*)` where :math:`N` is the number of nodes, and :math:`*` could be of any shape. - **g** (Graph): The input graph. Outputs: - Tensor, output node features. The shape is :math:`(N, num\_heads, out\_feat\_size)`. Raises: TypeError: If `in_feat_size` is not a positive int. TypeError: If `out_feat_size` is not a positive int. TypeError: If `num_heads` is not a positive int. TypeError: If `bias` is not a bool. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import mindspore as ms >>> from mindspore_gl.nn import DOTGATConv >>> from mindspore_gl import GraphField >>> n_nodes = 4 >>> n_edges = 8 >>> feat_size = 16 >>> src_idx = ms.Tensor([0, 0, 0, 1, 1, 1, 2, 3], ms.int32) >>> dst_idx = ms.Tensor([0, 1, 3, 1, 2, 3, 3, 2], ms.int32) >>> ones = ms.ops.Ones() >>> nodes_feat = ones((n_nodes, feat_size), ms.float32) >>> graph_field = GraphField(src_idx, dst_idx, n_nodes, n_edges) >>> out_size = 4 >>> conv = DOTGATConv(feat_size, out_size, num_heads=2, bias=True) >>> ret = conv(nodes_feat, *graph_field.get_graph()) >>> print(ret.shape) (4, 2, 4) """ def __init__(self, in_feat_size: int, out_feat_size: int, num_heads: int, bias=False): super().__init__() if in_feat_size <= 0 or not isinstance(in_feat_size, int): raise ValueError("in_feat_size must be positive int") if out_feat_size <= 0 or not isinstance(out_feat_size, int): raise ValueError("out_feat_size must be positive int") if num_heads <= 0 or not isinstance(num_heads, int): raise ValueError("num_heads must be positive int") if not isinstance(bias, bool): raise ValueError("bias must be bool") self.dense = ms.nn.Dense(in_feat_size, out_feat_size * num_heads, has_bias=bias) self.num_heads = num_heads self.out_feat_size = out_feat_size # pylint: disable=arguments-differ def construct(self, x, g: Graph): """ Construct function for DOTGATConv. """ feat_src = feat_dst = ms.ops.Reshape()(self.dense(x), (-1, self.num_heads, self.out_feat_size)) g.set_vertex_attr({"hsrc": feat_src, "hdst": feat_dst}) for v in g.dst_vertex: dotted = [g.dot(u.hsrc, v.hdst) for u in v.innbs] a = dotted / g.sum(dotted) v.h = g.sum(a * [u.hsrc for u in v.innbs]) return [v.h for v in g.dst_vertex]