Source code for mindspore_gl.graph.get_laplacian

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""laplacian normalization"""
from mindspore_gl.graph.self_loop import add_self_loop
import mindspore as ms
from mindspore import ops


[docs]def get_laplacian(edge_index, num_nodes, edge_weight=None, normalization='sym'): r""" Get laplacian matrix. Args: edge_index (Tensor): Edge index. The shape is :math:`(2, N\_e)` where :math:`N\_e` is the number of edges. num_nodes (int): Number of nodes. edge_weight (Tensor, optional): Edge weights. The shape is :math:`(N\_e)` where :math:`N\_e` is the number of edges. Default: ``None``. normalization (str, optional): Normalization method. Default: ``'sym'``. :math:`(L)` is normalized matrix, :math:`(D)` is degree matrix, :math:`(A)` is adjaceny matrix, :math:`(I)` is unit matrix. 1. ``None``: No normalization :math:`\mathbf{L} = \mathbf{D} - \mathbf{A}` 2. ``'sym'``: Symmetric normalization :math:`\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}` 3. ``'rw'``: Random-walk normalization :math:`\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{A}` Returns: - **edge_index** (Tensor) - normalized edge_index. - **edge_weight** (Tensor) - normalized edge_weight. Raises: ValueError: if `normalization` not is ``None`` or ``'sym'`` or ``'rw'``. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import mindspore as ms >>> from mindspore_gl.graph import get_laplacian >>> edge_index = [[1, 1, 2, 2], [0, 2, 0, 1]] >>> edge_index = ms.Tensor(edge_index, ms.int32) >>> num_nodes = 3 >>> edge_weight = ms.Tensor([1, 2, 1, 2], ms.float32) >>> edge_index, edge_weight = get_laplacian(edge_index, num_nodes, edge_weight, 'sym') >>> print(edge_index) [[1 1 2 2 0 1 2] [0 2 0 1 0 1 2]] >>> print(edge_weight) [-0. -0.6666666 -0. -0.6666666 1. 1. 1. ] """ if normalization not in [None, 'sym', 'rw']: raise TypeError("Invalid normalization, normalization must be 'sym', 'rm' or None") if edge_weight is None: edge_weight = ms.ops.Ones()(edge_index.shape[1], ms.float32) row, col = edge_index[0], edge_index[1] out = ops.Zeros()(num_nodes, ms.float32) index = ops.ExpandDims()(row, -1) deg = ops.TensorScatterAdd()(out, index, edge_weight) fill_values = ms.ops.Ones()(num_nodes, ms.float32) if normalization is None: # L = D - A. edge_index, edge_weight = add_self_loop(edge_index, edge_weight, num_nodes, fill_values, 'coo') edge_weight = ops.Concat()((-edge_weight, deg)) elif normalization == 'sym': # Compute A_norm = -D^{-1/2} A D^{-1/2}. deg_inv_sqrt = ops.Pow()(deg, -0.5) mask = ops.isfinite(deg_inv_sqrt) mask = ops.logical_not(mask) deg_inv_sqrt = ops.MaskedFill()(deg_inv_sqrt, mask, 0.0) edge_weight = deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col] # # L = I - A_norm. edge_index, edge_weight = add_self_loop(edge_index, -edge_weight, num_nodes, fill_values, 'coo') else: # Compute A_norm = -D^{-1} A. deg_inv = 1.0 / deg mask = ops.isfinite(deg_inv) mask = ops.logical_not(mask) deg_inv = ops.MaskedFill()(deg_inv, mask, 0.0) edge_weight = deg_inv[row] * edge_weight # L = I - A_norm. edge_index, edge_weight = add_self_loop(edge_index, -edge_weight, num_nodes, fill_values, 'coo') return edge_index, edge_weight