mindspore_gs.ptq.AWQConfig
- class mindspore_gs.ptq.AWQConfig(duo_scaling=True, smooth_alpha=[i/20 for i in range(20)], weight_clip_ratio=[1-i/20 for i in range(10)])[source]
Config for awq quant algorithm.
- Parameters
duo_scaling (bool, optional) – Use activation and weight to compute scale. Default value:
True
.smooth_alpha (List[float], optional) – The hyper-parameter of smooth search. Default value:
[i/20 for i in range(20)]
.weight_clip_ratio (List[float], optional) – The hyper-parameter of clip search. Default value:
[1-i/20 for i in range(10)]
.
- Raises
TypeError – If duo_scaling is not type bool.
TypeError – If smooth_alpha is not type float or list.
TypeError – If weight_clip_ratio is not float or list.
ValueError – If smooth_alpha is less than 0 or greater than 1.
ValueError – If weight_clip_ratio is less than 0 or greater than 1.
Examples
>>> from mindspore_gs.ptq import AWQConfig >>> AWQConfig(duo_scaling=True, smooth_alpha=[i/20 for i in range(20)], weight_clip_ratio=[1-i/20 for i in range(10)])