mindspore.mint.optim.Adam
- class mindspore.mint.optim.Adam(params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, amsgrad=False, *, maximize=False)[源代码]
Adaptive Moment Estimation (Adam)算法的实现。
更新公式如下:
警告
这是一个实验性API,后续可能修改或删除。
- 参数:
params (Union[list(Parameter), list(dict)]) - 网络参数的列表或指定了参数组的列表。
lr (Union[int, float, Tensor], 可选) - 学习率。默认值:
1e-3
。betas (Tuple[float, float], 可选) - 动量矩阵的指数衰减率。参数范围(0.0, 1.0)。默认值:
(0.9, 0.999)
。eps (float, 可选) - 加在分母上的值,以确保数值稳定。必须大于0。默认值:
1e-8
。weight_decay (float, 可选) - 权重衰减(L2 penalty)。默认值:
0.0
。amsgrad (bool, 可选) - 是否使用AMSGrad算法。默认值:
False
。
- 关键字参数:
maximize (bool, 可选) - 是否根据目标函数最大化网络参数。默认值:
False
。
- 输入:
gradients (tuple[Tensor]) - 网络权重的梯度。
- 异常:
ValueError - lr 不是int、float或Tensor。
ValueError - lr 小于0。
ValueError - eps 小于0。
ValueError - betas 范围不在[0, 1)之间。
ValueError - weight_decay 小于0。
- 支持平台:
Ascend
样例:
>>> import mindspore >>> from mindspore import mint >>> from mindspore import mint >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/r2.5.0/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True) >>> optimizer = mint.optim.Adam(net.trainable_params(), lr=0.1) >>> def forward_fn(data, label): ... logits = net(data) ... loss = loss_fn(logits, label) ... return loss, logits >>> grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True) >>> def train_step(data, label): ... (loss, _), grads = grad_fn(data, label) ... optimizer(grads) ... return loss