mindspore.ops.auto_generate.gen_ops_prim 源代码

# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""Operators definition generated by gen_ops.py, includes primitive classes."""

from mindspore.ops.primitive import Primitive, prim_arg_register
from mindspore.ops import signature as sig
from mindspore.common import dtype as mstype
from mindspore.common._decorator import deprecated
from mindspore.ops._primitive_cache import _get_cache_prim
from mindspore.ops.auto_generate.gen_arg_dtype_cast import type_it
from mindspore.ops.auto_generate.gen_arg_handler import *
from mindspore._c_expression import OpDtype
from mindspore.common._stub_tensor import _convert_stub
from mindspore._c_expression import pyboost_add_ext
from mindspore._c_expression import pyboost_argmax_with_value
from mindspore._c_expression import pyboost_argmin_with_value
from mindspore._c_expression import pyboost_broadcast_to
from mindspore._c_expression import pyboost_cast
from mindspore._c_expression import pyboost_ceil
from mindspore._c_expression import pyboost_concat
from mindspore._c_expression import pyboost_contiguous
from mindspore._c_expression import pyboost_copy
from mindspore._c_expression import pyboost_cos
from mindspore._c_expression import pyboost_div
from mindspore._c_expression import pyboost_equal
from mindspore._c_expression import pyboost_erfinv
from mindspore._c_expression import pyboost_exp
from mindspore._c_expression import pyboost_gather_d_grad_v2
from mindspore._c_expression import pyboost_gather_d
from mindspore._c_expression import pyboost_gelu_grad
from mindspore._c_expression import pyboost_gelu
from mindspore._c_expression import pyboost_greater_equal
from mindspore._c_expression import pyboost_greater
from mindspore._c_expression import pyboost_less_equal
from mindspore._c_expression import pyboost_log
from mindspore._c_expression import pyboost_logical_and
from mindspore._c_expression import pyboost_logical_not
from mindspore._c_expression import pyboost_logical_or
from mindspore._c_expression import pyboost_masked_fill
from mindspore._c_expression import pyboost_mul
from mindspore._c_expression import pyboost_neg
from mindspore._c_expression import pyboost_not_equal
from mindspore._c_expression import pyboost_reciprocal
from mindspore._c_expression import pyboost_reduce_any
from mindspore._c_expression import pyboost_relu_grad
from mindspore._c_expression import pyboost_relu
from mindspore._c_expression import pyboost_scatter
from mindspore._c_expression import pyboost_sigmoid_grad
from mindspore._c_expression import pyboost_sigmoid
from mindspore._c_expression import pyboost_silu_grad
from mindspore._c_expression import pyboost_silu
from mindspore._c_expression import pyboost_sin
from mindspore._c_expression import pyboost_softmax_backward
from mindspore._c_expression import pyboost_softmax
from mindspore._c_expression import pyboost_sqrt
from mindspore._c_expression import pyboost_square
from mindspore._c_expression import pyboost_sub_ext
from mindspore._c_expression import pyboost_tile
from mindspore._c_expression import pyboost_transpose


class ACosGrad(Primitive):
    r"""
    Computes ACosGrad of input element-wise.

    Returns:
        Tensor, has the same type as input.
    """
    @prim_arg_register
    def __init__(self):
        pass

    def __call__(self, x, dout):
          return super().__call__(x, dout)


a_cos_grad_op=ACosGrad()


class AbsGrad(Primitive):
    r"""
    Computes gradients for abs operation.
    """
    @prim_arg_register
    def __init__(self):
        pass

    def __call__(self, x, dout):
          return super().__call__(x, dout)


abs_grad_op=AbsGrad()


[文档]class Abs(Primitive): r""" .. code-block:: prim = ops.Abs() out = prim(input) is equivalent to .. code-block:: ops.abs(input) Refer to :func:`mindspore.ops.abs` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
abs_op=Abs()
[文档]class ACos(Primitive): r""" .. code-block:: prim = ops.ACos() out = prim(input) is equivalent to .. code-block:: ops.acos(input) Refer to :func:`mindspore.ops.acos` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
acos_op=ACos() class AcoshGrad(Primitive): r""" Performs grad of Acosh operation. """ @prim_arg_register def __init__(self): pass def __call__(self, out, dout): return super().__call__(out, dout) acosh_grad_op=AcoshGrad()
[文档]class Acosh(Primitive): r""" .. code-block:: prim = ops.Acosh() out = prim(input) is equivalent to .. code-block:: ops.acosh(input) Refer to :func:`mindspore.ops.acosh` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
acosh_op=Acosh()
[文档]class AdamWeightDecay(Primitive): r""" Updates gradients by the Adaptive Moment Estimation algorithm with weight decay (AdamWeightDecay). The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_. The AdamWeightDecay variant was proposed in `Decoupled Weight Decay Regularization <https://arxiv.org/abs/1711.05101>`_. The updating formulas are as follows, .. math:: \begin{array}{ll} \\ m = \beta_1 * m + (1 - \beta_1) * g \\ v = \beta_2 * v + (1 - \beta_2) * g * g \\ update = \frac{m}{\sqrt{v} + \epsilon} \\ update = \begin{cases} update + weight\_decay * w & \text{ if } weight\_decay > 0 \\ update & \text{ otherwise } \end{cases} \\ w = w - lr * update \end{array} :math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents `gradient`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`, :math:`lr` represents `learning_rate`, :math:`w` represents `var`, :math:`decay` represents `weight_decay`, :math:`\epsilon` represents `epsilon`. Args: use_locking (bool): Whether to enable a lock to protect variable tensors from being updated. If ``True`` , updates of the var, m, and v tensors will be protected by a lock. If ``False`` , the result is unpredictable. Default: ``False`` . Inputs: - **var** (Parameter) - Weights to be updated. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. The data type can be float16 or float32. - **m** (Parameter) - The 1st moment vector in the updating formula, it should have the the shape as `var`. The data type can be float16 or float32. - **v** (Parameter) - The 2nd moment vector in the updating formula, it should have the same shape as `m`. - **lr** (float) - :math:`lr` in the updating formula. The paper suggested value is :math:`10^{-8}`, the data type should be float32. - **beta1** (float) - The exponential decay rate for the 1st moment estimations, the data type should be float32. The paper suggested value is :math:`0.9` - **beta2** (float) - The exponential decay rate for the 2nd moment estimations, the data type should be float32. The paper suggested value is :math:`0.999` - **epsilon** (float) - Term added to the denominator to improve numerical stability, the data type should be float32. - **decay** (float) - The weight decay value, must be a scalar tensor with float32 data type. Default: ``0.0`` . - **gradient** (Tensor) - Gradient, has the same shape as `var`. Outputs: Tuple of 3 Tensor, the updated parameters. - **var** (Tensor) - The same shape and data type as `var`. - **m** (Tensor) - The same shape and data type as `m`. - **v** (Tensor) - The same shape and data type as `v`. Raises: TypeError: If `use_locking` is not a bool. TypeError: If `lr`, `beta1`, `beta2`, `epsilon` or `decay` is not a float32. TypeError: If `var`, `m` or `v` is not a Parameter with dtype float16 or float32. TypeError: If `gradient` is not a Tensor. ValueError: If `epsilon` <= 0. ValueError: If `beta1`, `beta2` is not in range (0.0,1.0). ValueError: If `decay` < 0. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore.nn as nn >>> from mindspore import Tensor, Parameter, ops >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.adam_weight_decay = ops.AdamWeightDecay() ... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var") ... self.m = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="m") ... self.v = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="v") ... def construct(self, lr, beta1, beta2, epsilon, decay, grad): ... out = self.adam_weight_decay(self.var, self.m, self.v, lr, beta1, beta2, ... epsilon, decay, grad) ... return out >>> net = Net() >>> gradient = Tensor(np.ones([2, 2]).astype(np.float32)) >>> output = net(0.001, 0.9, 0.999, 1e-8, 0.0, gradient) >>> print(net.var.asnumpy()) [[0.999 0.999] [0.999 0.999]] """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('m', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T1), sig.make_sig('v', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T1), sig.make_sig('lr', dtype=sig.sig_dtype.T2), sig.make_sig('beta1', dtype=sig.sig_dtype.T2), sig.make_sig('beta2', dtype=sig.sig_dtype.T2), sig.make_sig('epsilon', dtype=sig.sig_dtype.T2), sig.make_sig('decay', dtype=sig.sig_dtype.T2), sig.make_sig('gradient', dtype=sig.sig_dtype.T3), ) @prim_arg_register def __init__(self, use_locking=False): self._set_prim_arg("use_locking", use_locking) self.add_prim_attr("side_effect_mem", True) def __call__(self, var, m, v, lr, beta1, beta2, epsilon, decay, gradient): return super().__call__(var, m, v, lr, beta1, beta2, epsilon, decay, gradient, self.use_locking)
class AddExt(Primitive): r""" .. code-block:: prim = ops.AddExt() out = prim(input, other, alpha) is equivalent to .. code-block:: ops.add_ext(input, other, alpha) Refer to :func:`mindspore.ops.add_ext` for more details. """ __mindspore_signature__ = ( sig.make_sig('input', dtype=sig.sig_dtype.T), sig.make_sig('other', dtype=sig.sig_dtype.T), sig.make_sig('alpha', dtype=sig.sig_dtype.T1, default=1), ) @prim_arg_register def __init__(self): pass def __call__(self, input, other, alpha=1): return _convert_stub(pyboost_add_ext(self, [input, other, alpha])) add_ext_op=AddExt()
[文档]class Add(Primitive): r""" .. code-block:: prim = ops.Add() out = prim(input, other) is equivalent to .. code-block:: ops.add(input, other) Refer to :func:`mindspore.ops.add` for more details. """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, input, other): return super().__call__(input, other)
add_op=Add()
[文档]class Addcdiv(Primitive): r""" Adds the element-wise division of `x1` by `x2`, multiplied by `value` to `input_data`. It computes the following operation: .. math:: y[i] = input\_data[i] + value[i] * (x1[i] / x2[i]) Inputs: - **input_data** (Tensor) - The tensor to be added. - **x1** (Tensor) - The numerator tensor. - **x2** (Tensor) - The denominator tensor. - **value** (Tensor) - The multiplier for tensor x1/x2. Outputs: Tensor, has the same shape and dtype as x1/x2. Raises: TypeError: If dtype of `x1`, `x2`, `value`, `input_data` is not tensor. TypeError: If dtype of `x1`, `x2`, `value`, `input_data` are not the same. ValueError: If `x1` could not be broadcast to `x2`. ValueError: If `value` could not be broadcast to `x1/x2`. ValueError: If `input_data` could not be broadcast to `value*(x1/x2)`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_data = Tensor(np.array([1, 1, 1, 1]), mindspore.float32) >>> x1 = Tensor(np.array([1, 2, 3, 4]), mindspore.float32) >>> x2 = Tensor(np.array([4, 3, 2, 1]), mindspore.float32) >>> value = Tensor([1], mindspore.float32) >>> addcdiv = ops.Addcdiv() >>> y = addcdiv(input_data, x1, x2, value) >>> print(y) [1.25 1.6666667 2.5 5. ] """ @prim_arg_register def __init__(self): pass def __call__(self, input, tensor1, tensor2, value): return super().__call__(input, tensor1, tensor2, value)
addcdiv_op=Addcdiv()
[文档]class Addcmul(Primitive): r""" Adds the element-wise product of `x1` by `x2`, multiplied by `value` to `input_data`. It computes the following operation: .. math:: output[i] = input\_data[i] + value[i] * (x1[i] * x2[i]) Inputs: - **input_data** (Tensor) - The tensor to be added. - **x1** (Tensor) - The tensor to be multiplied. - **x2** (Tensor) - The tensor to be multiplied. - **value** (Tensor) - The multiplier for tensor x1*x2. Outputs: Tensor, has the same shape and dtype as x1*x2. Raises: TypeError: If dtype of `x1`, `x2`, `value`, `input_data` is not tensor. TypeError: If dtype of `x1`, `x2`, `value`, `input_data` are not the same. ValueError: If `x1` could not be broadcast to `x2`. ValueError: If `value` could not be broadcast to `x1` * `x2`. ValueError: If `input_data` could not be broadcast to `value*(x1*x2)`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_data = Tensor(np.array([1, 1, 1]), mindspore.float32) >>> x1 = Tensor(np.array([[1], [2], [3]]), mindspore.float32) >>> x2 = Tensor(np.array([[1, 2, 3]]), mindspore.float32) >>> value = Tensor([1], mindspore.float32) >>> addcmul = ops.Addcmul() >>> y = addcmul(input_data, x1, x2, value) >>> print(y) [[ 2. 3. 4.] [ 3. 5. 7.] [ 4. 7. 10.]] """ @prim_arg_register def __init__(self): pass def __call__(self, input, tensor1, tensor2, value): return super().__call__(input, tensor1, tensor2, value)
addcmul_op=Addcmul() class AddN(Primitive): r""" .. code-block:: prim = ops.AddN() out = prim(x) is equivalent to .. code-block:: ops.addn(x) Refer to :func:`mindspore.ops.addn` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, x): return super().__call__(x) addn_op=AddN()
[文档]class Angle(Primitive): r""" .. code-block:: prim = ops.Angle() out = prim(input) is equivalent to .. code-block:: ops.angle(input) Refer to :func:`mindspore.ops.angle` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
angle_op=Angle() class ApplyCamePart1(Primitive): r""" Computes Part 1 of the CAME Optimizer. Args: - **grad** (Tensor) - The shape = 2D :math:`(..., n, m)`. A Tensor of types: float16, float32, bfloat16. - **eps** (float) - data type must be float. Returns: - **sum_grad_r** (Tensor) - A Tensor of shape :math:`(..., n)` - **sum_grad_c** (Tensor) - A Tensor of shape :math:`(..., m)` - **sum_grad_rc** (Tensor) - A Tensor of of shape:math:`(..., m)` Raises: TypeError: If `grad` is not a Tensor. Supported Platforms: ``Ascend`` Examples: >>> import mindspore as ms >>> import numpy as np >>> from mindspore import Tensor >>> from mindspore.ops.operations import _inner_ops as P >>> grad = Tensor(np.ones([1024, 64]), dtype=ms.float32) >>> apply_came_part1 = P.ApplyCamePart1() >>> output = apply_came_part1(grad, 1.1) >>> print(output[0].asnumpy()) (1024,) """ @prim_arg_register def __init__(self): pass def __call__(self, grad, eps): return super().__call__(grad, eps) apply_came_part1_op=ApplyCamePart1() class ApplyCamePart2(Primitive): r""" Computes Part 2 of the CAME Optimizer. Args: - **grad** (Tensor) - The shape = 2D :math:`(..., n, m)`. A Tensor of types: float16, float32, bfloat16. - **sum_grad_r** (Tensor) - The shape = 1D :math:`(..., n)`. A Tensor of types: float32. - **sum_grad_c** (Tensor) - The shape = 1D :math:`(..., m)`. A Tensor of types: float32. - **sum_grad_rc** (Tensor) - The shape = 1D :math:`(...)`. A Tensor of types: float32. - **r** (Tensor) - The shape = 1D :math:`(..., n)`. The Tensor has the same data type as `grad`. - **c** (Tensor) - The shape = 1D :math:`(..., m)`. The Tensor has the same data type as `grad`. - **beta2** (float) - data type must be float. - **sum_r** (Tensor) - The shape = 1D :math:`(..., 1)`. 'None' is currently supported. A Tensor of types: float32. - **global_shape** (Tensor) - the shape = 1D :math:`(2)`. 'None' is currently supported. A Tensor of types: int64. Returns: - **r** (Tensor) - A Tensor of shape :math:`(..., n)` - **c** (Tensor) - A Tensor of shape :math:`(..., m)` - **u** (Tensor) - A Tensor of of shape:math:`(..., n, m)` - **sum_square_u** (Tensor) - A Tensor of of shape:math:`(1)` Raises: TypeError: If `grad` is not a Tensor. Supported Platforms: ``Ascend`` Examples: >>> import mindspore as ms >>> import numpy as np >>> from mindspore import Tensor >>> from mindspore.ops.operations import _inner_ops as P >>> apply_came_part2 = P.ApplyCamePart2() >>> grad = Tensor(np.ones([1024, 64]), dtype=ms.float32) >>> sum_grad_r = Tensor(np.ones([1024]), dtype=ms.float32) >>> sum_grad_c = Tensor(np.ones([64]), dtype=ms.float32) >>> sum_grad_rc = Tensor(np.array([64]), dtype=ms.float32) >>> r = Tensor(np.ones([1024]), dtype=ms.float32) >>> c = Tensor(np.ones([64]), dtype=ms.float32) >>> beta2 = 0.5 >>> sum_r = Tensor(np.array([128]), dtype=ms.float32) >>> global_shape = (1024, 64) >>> output = apply_came_part2(grad, sum_grad_r, sum_grad_c, sum_grad_rc, r, c, beta2, sum_r, global_shape) >>> print(output[0].shape) (1024,) """ __mindspore_signature__ = ( sig.make_sig('grad'), sig.make_sig('sum_grad_r'), sig.make_sig('sum_grad_c'), sig.make_sig('sum_grad_rc'), sig.make_sig('r'), sig.make_sig('c'), sig.make_sig('beta2'), sig.make_sig('sum_r', default=None), sig.make_sig('global_shape', default=None), ) @prim_arg_register def __init__(self): pass def __call__(self, grad, sum_grad_r, sum_grad_c, sum_grad_rc, r, c, beta2, sum_r=None, global_shape=None): return super().__call__(grad, sum_grad_r, sum_grad_c, sum_grad_rc, r, c, beta2, sum_r, global_shape) apply_came_part2_op=ApplyCamePart2() class ApplyCamePart3(Primitive): r""" Computes Part 3 of the CAME Optimizer. Args: - **u** (Parameter) - The shape = 2D :math:`(..., n, m)`. A Tensor of types: float16, float32, bfloat16. - **m** (Parameter) - The shape = 2D :math:`(..., n, m)`. A Tensor of types: float16, float32, bfloat16. - **eps** (float) - data type must be float. - **beta1** (float) - data type must be float. - **clip_threshold** (float) - data type must be float. - **sum_square_u** (Tensor) - The shape = 1D :math:`(1)`. A Tensor of types: float32. - **global_shape** (Tensor) - the shape = 1D :math:`(2)`. 'None' is currently supported. A Tensor of types: int64. - **use_first_moment** (bool). Returns: - **m** (Tensor) - A Tensor of shape :math:`(..., n, m)` - **sum_u_r** (Tensor) - A Tensor of shape :math:`(..., n)` - **sum_u_c** (Tensor) - A Tensor of of shape:math:`(..., m)` - **sum_u_rc** (Tensor) - A Tensor of of shape:math:`(...)` Raises: TypeError: If `u` is not a Tensor. Supported Platforms: ``Ascend`` Examples: >>> import mindspore as ms >>> import numpy as np >>> from mindspore import Tensor >>> from mindspore.ops.operations import _inner_ops as P >>> apply_came_part3 = P.ApplyCamePart3() >>> u = Tensor(np.ones([1024, 64]), dtype=ms.float32) >>> m = Tensor(np.ones([1024, 64]), dtype=ms.float32) >>> eps = 0.8 >>> beta1 = 0.5 >>> clip_threshold = 0.5 >>> sum_square_u = Tensor(np.array([128]), dtype=ms.float32) >>> global_shape = (1024, 64) >>> use_first_moment = False >>> output = apply_came_part3(u, m, eps, beta1, clip_threshold, sum_square_u, global_shape, use_first_moment) >>> print(output[0].shape) (1024, 64) """ __mindspore_signature__ = ( sig.make_sig('u'), sig.make_sig('m'), sig.make_sig('eps'), sig.make_sig('beta1'), sig.make_sig('clip_threshold'), sig.make_sig('sum_square_u'), sig.make_sig('global_shape', default=None), sig.make_sig('use_first_moment', default=False), ) @prim_arg_register def __init__(self): pass def __call__(self, u, m, eps, beta1, clip_threshold, sum_square_u, global_shape=None, use_first_moment=False): return super().__call__(u, m, eps, beta1, clip_threshold, sum_square_u, global_shape, use_first_moment) apply_came_part3_op=ApplyCamePart3() class ApplyCamePart4(Primitive): r""" Computes Part 4 of the CAME Optimizer. Args: - **param** (Parameter) - The shape = 2D :math:`(..., n, m)`. A Tensor of types: float16, float32, bfloat16. - **m** (Parameter) - The shape = 2D :math:`(..., n, m)`. The Tensor has the same data type as `param`. - **r** (Tensor) - The shape = 1D :math:`(..., n)`. The Tensor has the same data type as `param`. - **c** (Tensor) - The shape = 1D :math:`(..., m)`. The Tensor has the same data type as `param`. - **weight_decay** (Tensor) - The shape = 1D :math:`(1)`. A Tensor of types: float32. - **lr** (Tensor) - The shape = 1D :math:`(1)`. A Tensor of types: float32. - **beta3** (float) - data type must be float. - **sum_r** (Tensor) - The shape = 1D :math:`(..., 1)`. 'None' is currently supported. A Tensor of types: float32. - **sum_u_r** (Tensor) - The shape = 1D :math:`(..., n)`. A Tensor of types: float32. - **sum_u_c** (Tensor) - The shape = 1D :math:`(..., m)`. A Tensor of types: float32. - **sum_u_rc** (Tensor) - The shape = 1D :math:`(...)`. A Tensor of types: float32. - **global_shape** (Tensor) - the shape = 1D :math:`(2)`. 'None' is currently supported. A Tensor of types: int64. Returns: - **param** (Tensor) - A Tensor of shape :math:`(..., n, m)` - **r** (Tensor) - A Tensor of shape :math:`(..., n)` - **c** (Tensor) - A Tensor of of shape:math:`(..., m)` Raises: TypeError: If `param` is not a Tensor. Supported Platforms: ``Ascend`` Examples: >>> import mindspore as ms >>> import numpy as np >>> from mindspore import Tensor >>> from mindspore.ops.operations import _inner_ops as P >>> apply_came_part4 = P.ApplyCamePart4() >>> param = Tensor(np.ones([1024, 64]), dtype=ms.float32) >>> m = Tensor(np.ones([1024, 64]), dtype=ms.float32) >>> r = Tensor(np.ones([1024]), dtype=ms.float32) >>> c = Tensor(np.ones([64]), dtype=ms.float32) >>> weight_decay = Tensor([0.8]) >>> lr = Tensor([0.5]) >>> beta3 = 0.5 >>> sum_r = Tensor(np.array([128.]), dtype=ms.float32) >>> sum_u_r = Tensor(np.ones([1024]), dtype=ms.float32) >>> sum_u_c = Tensor(np.ones([64]), dtype=ms.float32) >>> sum_u_rc = Tensor(np.array([128.]), dtype=ms.float32) >>> global_shape = (1024, 64) >>> output = apply_came_part4(param, m, r, c, weight_decay, lr, beta3, \ ... sum_r, sum_u_r, sum_u_c, sum_u_rc, global_shape) >>> print(output[0].shape) (1024, 64) """ __mindspore_signature__ = ( sig.make_sig('param'), sig.make_sig('m'), sig.make_sig('r'), sig.make_sig('c'), sig.make_sig('weight_decay'), sig.make_sig('lr'), sig.make_sig('beta3'), sig.make_sig('sum_r'), sig.make_sig('sum_u_r'), sig.make_sig('sum_u_c'), sig.make_sig('sum_u_rc'), sig.make_sig('global_shape', default=None), ) @prim_arg_register def __init__(self): pass def __call__(self, param, m, r, c, weight_decay, lr, beta3, sum_r, sum_u_r, sum_u_c, sum_u_rc, global_shape=None): return super().__call__(param, m, r, c, weight_decay, lr, beta3, sum_r, sum_u_r, sum_u_c, sum_u_rc, global_shape) apply_came_part4_op=ApplyCamePart4() class ApplyRotaryPosEmb(Primitive): r""" .. code-block:: prim = ops.ApplyRotaryPosEmb(cos_format) out = prim(query, key, cos, sin, position_ids) is equivalent to .. code-block:: ops.apply_rotary_pos_emb_(query, key, cos, sin, position_ids, cos_format) Refer to :func:`mindspore.ops.apply_rotary_pos_emb_` for more details. """ @prim_arg_register def __init__(self, cos_format=0): self._set_prim_arg("cos_format", cos_format) def __call__(self, query, key, cos, sin, position_ids): return super().__call__(query, key, cos, sin, position_ids, self.cos_format)
[文档]class Argmax(Primitive): r""" Returns the indices of the maximum value along a specified `axis` of a Tensor. Refer to :func:`mindspore.ops.argmax` for more details. Args: axis (int): Axis where the Argmax operation applies to. Default: ``-1`` . output_type (:class:`mindspore.dtype`): Output data type. Supported types: ``mstype.int32`` , ``mstype.int64`` . Default: ``mstype.int32`` . Inputs: - **input_x** (Tensor) - The input tensor. :math:`(N, *)` where :math:`*` means, any number of additional dimensions. Outputs: Tensor, indices of the max value of input tensor across the axis. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_x = Tensor(np.array([[1, 20, 5], [67, 8, 9], [130, 24, 15]]).astype(np.float32)) >>> output = ops.Argmax(output_type=mindspore.int32)(input_x) >>> print(output) [1 0 0] """ @prim_arg_register def __init__(self, axis=-1, output_type=mstype.int32): self._set_prim_arg("axis", axis) self._set_prim_arg_with_handler("output_type", output_type, dtype_to_type_id) def __call__(self, input_x): return super().__call__(input_x, self.axis, self.output_type)
[文档]class ArgMaxWithValue(Primitive): r""" Calculates the maximum value along with the given axis for the input tensor, and returns the maximum values and indices. Note: In auto_parallel and semi_auto_parallel mode, the first output index can not be used. .. warning:: - If there are multiple maximum values, the index of the first maximum value is used. - The value range of `axis` is [-dims, dims - 1]. "dims" is the dimension length of `input`. Also see :func:`mindspore.ops.max`. Args: axis (int): The dimension to reduce. Default: ``0`` . keep_dims (bool): Whether to reduce dimension, if ``True`` , the output will keep same dimension with the input, the output will reduce dimension if ``false`` . Default: ``False`` . Inputs: - **input** (Tensor) - The input tensor, can be any dimension. Set the shape of input tensor as :math:`(input_1, input_2, ..., input_N)`. Outputs: tuple (Tensor), tuple of 2 tensors, containing the corresponding index and the maximum value of the input tensor. - **index** (Tensor) - The index for the maximum value of the input tensor, with dtype int64. If `keep_dims` is ``True`` , the shape of output tensors is :math:`(input_1, input_2, ..., input_{axis-1}, 1, input_{axis+1}, ..., input_N)`. Otherwise, the shape is :math:`(input_1, input_2, ..., input_{axis-1}, input_{axis+1}, ..., input_N)` . - **values** (Tensor) - The maximum value of input tensor, with the same shape as `index`, and same dtype as `input`. Raises: TypeError: If `keep_dims` is not a bool. TypeError: If `axis` is not an int. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32) >>> index, output = ops.ArgMaxWithValue()(input_x) >>> print(index, output) 3 0.7 >>> index, output = ops.ArgMaxWithValue(keep_dims=True)(input_x) >>> print(index, output) [3] [0.7] """ @prim_arg_register def __init__(self, axis=0, keep_dims=False): self._set_prim_arg("axis", axis) self._set_prim_arg("keep_dims", keep_dims) def __call__(self, input): return _convert_stub(pyboost_argmax_with_value(self, [input, self.axis, self.keep_dims]))
[文档]class Argmin(Primitive): r""" Returns the indices of the minimum value along a specified `axis` of a Tensor. If the shape of input tensor is :math:`(x_1, ..., x_N)`, the shape of the output tensor is :math:`(x_1, ..., x_{axis-1}, x_{axis+1}, ..., x_N)`. Args: axis (int): Axis where the Argmin operation applies to. Default: ``-1`` . output_type (:class:`mindspore.dtype`): Output data type. Supported types: ``mstype.int32`` , ``mstype.int64`` . Default: ``mstype.int32`` . Inputs: - **input_x** (Tensor) - Input tensor. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. Outputs: Tensor, which is the minimum index in the specified axis of input Tensor. Raises: TypeError: If `axis` is not an int. TypeError: If `output_type` is neither int32 nor int64. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_x = Tensor(np.array([2.0, 3.1, 1.2]), mindspore.float32) >>> index = ops.Argmin()(input_x) >>> print(index) 2 """ @prim_arg_register def __init__(self, axis=-1, output_type=mstype.int32): self._set_prim_arg("axis", axis) self._set_prim_arg_with_handler("output_type", output_type, dtype_to_type_id) def __call__(self, x): return super().__call__(x, self.axis, self.output_type)
[文档]class ArgMinWithValue(Primitive): r""" Calculates the minimum value along with the given axis for the input tensor, and returns the minimum values and indices. Note: In auto_parallel and semi_auto_parallel mode, the first output index can not be used. .. warning:: - If there are multiple minimum values, the index of the first minimum value is used. - The value range of `axis` is [-dims, dims - 1]. "dims" is the dimension length of `input`. Also see :func:`mindspore.ops.min`. Args: axis (int): The dimension to reduce. Default: ``0`` . keep_dims (bool): Whether to reduce dimension, if ``True`` the output will keep the same dimension as the input, the output will reduce dimension if ``false`` . Default: ``False`` . Inputs: - **input** (Tensor) - The input tensor, can be any dimension. Set the shape of input tensor as :math:`(input_1, input_2, ..., input_N)` .Complex tensor is not supported. Outputs: tuple (Tensor), tuple of 2 tensors, containing the corresponding index and the minimum value of the input tensor. - **index** (Tensor) - The index for the minimum value of the input tensor, with dtype int64. If `keep_dims` is ``True`` , the shape of output tensors is :math:`(input_1, input_2, ..., input_{axis-1}, 1, input_{axis+1}, ..., input_N)`. Otherwise, the shape is :math:`(input_1, input_2, ..., input_{axis-1}, input_{axis+1}, ..., input_N)` . - **values** (Tensor) - The minimum value of input tensor, with the same shape as `index`, and same dtype as `input`. Raises: TypeError: If `input` is not Tensor. TypeError: If `keep_dims` is not a bool. TypeError: If `axis` is not an int. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32) >>> index, output = ops.ArgMinWithValue()(x) >>> print(index, output) 0 0.0 >>> index, output = ops.ArgMinWithValue(keep_dims=True)(x) >>> print(index, output) [0] [0.0] """ @prim_arg_register def __init__(self, axis=0, keep_dims=False): self._set_prim_arg("axis", axis) self._set_prim_arg("keep_dims", keep_dims) def __call__(self, input): return _convert_stub(pyboost_argmin_with_value(self, [input, self.axis, self.keep_dims]))
class AsinGrad(Primitive): r""" Computes AsinGrad of input element-wise. Returns: Tensor, has the same type as input. """ @prim_arg_register def __init__(self): pass def __call__(self, x, dout): return super().__call__(x, dout) asin_grad_op=AsinGrad()
[文档]class Asin(Primitive): r""" .. code-block:: prim = ops.Asin() out = prim(input) is equivalent to .. code-block:: ops.asin(input) Refer to :func:`mindspore.ops.asin` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
asin_op=Asin() class AsinhGrad(Primitive): r""" Performs grad of Asinh operation. """ @prim_arg_register def __init__(self): pass def __call__(self, out, dout): return super().__call__(out, dout) asinh_grad_op=AsinhGrad()
[文档]class Asinh(Primitive): r""" .. code-block:: prim = ops.Asinh() out = prim(input) is equivalent to .. code-block:: ops.asinh(input) Refer to :func:`mindspore.ops.asinh` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
asinh_op=Asinh()
[文档]class AssignAdd(Primitive): r""" .. code-block:: prim = ops.AssignAdd() out = prim(variable, value) is equivalent to .. code-block:: ops.assign_add(variable, value) Refer to :func:`mindspore.ops.assign_add` for more details. """ __mindspore_signature__ = ( sig.make_sig('variable', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('value', dtype=sig.sig_dtype.T), ) @prim_arg_register def __init__(self): self.add_prim_attr("side_effect_mem", True) def __call__(self, variable, value): return super().__call__(variable, value)
assign_add_op=AssignAdd()
[文档]class Assign(Primitive): r""" .. code-block:: prim = ops.Assign() out = prim(variable, value) is equivalent to .. code-block:: ops.assign(variable, value) Refer to :func:`mindspore.ops.assign` for more details. """ __mindspore_signature__ = ( sig.make_sig('variable', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('value', dtype=sig.sig_dtype.T), ) @prim_arg_register def __init__(self): self.add_prim_attr("side_effect_mem", True) def __call__(self, variable, value): return super().__call__(variable, value)
assign_op=Assign()
[文档]class Atan2(Primitive): r""" .. code-block:: prim = ops.Atan2() out = prim(input, other) is equivalent to .. code-block:: ops.atan2(input, other) Refer to :func:`mindspore.ops.atan2` for more details. """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, input, other): return super().__call__(input, other)
atan2_op=Atan2() class AtanGrad(Primitive): r""" Computes AtanGrad of input element-wise. Returns: Tensor, has the same type as input. """ @prim_arg_register def __init__(self): pass def __call__(self, x, dout): return super().__call__(x, dout) atan_grad_op=AtanGrad()
[文档]class Atan(Primitive): r""" .. code-block:: prim = ops.Atan() out = prim(input) is equivalent to .. code-block:: ops.atan(input) Refer to :func:`mindspore.ops.atan` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
atan_op=Atan()
[文档]class Atanh(Primitive): r""" .. code-block:: prim = ops.Atanh() out = prim(input) is equivalent to .. code-block:: ops.atanh(input) Refer to :func:`mindspore.ops.atanh` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
atanh_op=Atanh() class AvgPoolGrad(Primitive): r""" Gradients of the avg pool operation. """ @prim_arg_register def __init__(self, kernel_size=1, strides=1, pad_mode='VALID', data_format='NCHW'): self._set_prim_arg_with_handler("kernel_size", kernel_size, to_kernel_size) self._set_prim_arg_with_handler("strides", strides, to_strides) self._set_prim_arg_with_handler("pad_mode", pad_mode, str_to_enum) self._set_prim_arg_with_handler("data_format", data_format, str_to_enum) def __call__(self, x, out, dout): return super().__call__(x, out, dout, self.kernel_size, self.strides, self.pad_mode, self.data_format)
[文档]class AvgPool(Primitive): r""" Average pooling operation. Refer to :func:`mindspore.ops.avg_pool2d` for more details. Args: kernel_size (Union[int, tuple[int]]): The size of kernel used to take the average value, is an int number that represents height and width of the kernel, or a tuple of two int numbers that represent height and width respectively. Default: ``1`` . strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents the height and width of movement are both strides, or a tuple of two int numbers that represent height and width of movement respectively. Default: ``1`` . pad_mode (str, optional): Specifies the padding mode with a padding value of 0. It can be set to: ``"SAME"`` or ``"VALID"`` . Default: ``"VALID"`` . - ``"SAME"``: Pad the input around its edges so that the shape of input and output are the same when `stride` is set to ``1``. The amount of padding to is calculated by the operator internally, If the amount is even, it is uniformly distributed around the input, if it is odd, the excess amount goes to the right/bottom side. - ``"valid"``: No padding is applied to the input, and the output returns the maximum possible height and width. Extra pixels that could not complete a full stride will be discarded. data_format (str, optional): The format of input and output data. It should be ``'NHWC'`` or ``'NCHW'`` . Default: ``'NCHW'`` . Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`. Supported dtypes: float16, float32, float64. Outputs: Tensor, with shape :math:`(N, C_{out}, H_{out}, W_{out})`. Raises: TypeError: If `kernel_size` or `strides` is neither int nor tuple. TypeError: If dtype of `x` is not float16, float32 or float64. ValueError: If `kernel_size` or `strides` is less than 1. ValueError: If `pad_mode` is neither 'valid' nor 'same' with not case sensitive. ValueError: If `data_format` is neither 'NCHW' nor 'NHWC'. ValueError: If length of shape of `x` is not equal to 4. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops, nn >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.avgpool_op = ops.AvgPool(pad_mode='VALID', kernel_size=2, strides=1) ... ... def construct(self, x): ... result = self.avgpool_op(x) ... return result ... >>> x = Tensor(np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4), mindspore.float32) >>> net = Net() >>> output = net(x) >>> print(output) [[[[ 2.5 3.5 4.5] [ 6.5 7.5 8.5]] [[14.5 15.5 16.5] [18.5 19.5 20.5]] [[26.5 27.5 28.5] [30.5 31.5 32.5]]]] """ @prim_arg_register def __init__(self, kernel_size=1, strides=1, pad_mode='VALID', data_format='NCHW'): self._set_prim_arg_with_handler("kernel_size", kernel_size, to_kernel_size) self._set_prim_arg_with_handler("strides", strides, to_strides) self._set_prim_arg_with_handler("pad_mode", pad_mode, str_to_enum) self._set_prim_arg_with_handler("data_format", data_format, str_to_enum) def __call__(self, x): return super().__call__(x, self.kernel_size, self.strides, self.pad_mode, self.data_format)
class BatchNormGradGrad(Primitive): r""" Performs grad of BatchNormGrad operation. """ @prim_arg_register def __init__(self, is_training=False, epsilon=1e-5, data_format='NCHW'): self._set_prim_arg("is_training", is_training) self._set_prim_arg("epsilon", epsilon) self._set_prim_arg_with_handler("data_format", data_format, str_to_enum) def __call__(self, x, dy, scale, saved_mean, saved_variance, dout_dx, dout_dscale, dout_dbias): return super().__call__(x, dy, scale, saved_mean, saved_variance, dout_dx, dout_dscale, dout_dbias, self.is_training, self.epsilon, self.data_format) class BatchNormGrad(Primitive): r""" Performs grad of BatchNorm operation. """ @prim_arg_register def __init__(self, is_training=False, epsilon=1e-5, data_format='NCHW'): self._set_prim_arg("is_training", is_training) self._set_prim_arg("epsilon", epsilon) self._set_prim_arg_with_handler("data_format", data_format, str_to_enum) def __call__(self, dout, x, scale, saved_mean, saved_variance, reserve): return super().__call__(dout, x, scale, saved_mean, saved_variance, reserve, self.is_training, self.epsilon, self.data_format) class Betainc(Primitive): r""" Calculates the regularized incomplete beta function :math:`I_{x}(a, b)`. It is defined as the ratio of the incomplete beta function to the complete beta function: .. math:: I_{x}(a, b)=\frac{B(x ; a, b)}{B(a, b)} where .. math:: B(x ; a, b)=\int_{0}^{x} t^{a-1}(1-t)^{b-1} dt is the incomplete beta function and .. math:: B(a, b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt is the complete beta function. Inputs: - **a** (Tensor) - Peak location of beta distribution. A Tensor of types: float32, float64. - **b** (Tensor) - Spread of the beta distribution. A Tensor, must have the same dtype and shape as `a` . - **x** (Tensor) - Upper limit of integration of the incomplete beta function. A Tensor, must have the same dtype and shape as `a` . Outputs: A Tensor, has the same dtype and shape as `a` . Raises: TypeError: If dtype of `a` is not float32 nor float64. TypeError: If either dtype of `b` and `x` is not the same as the `a`. ValueError: If either shape of `b` and `x` is not the same as the `a`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> a = Tensor(np.array([0.3, 0.1, 0.4]), mindspore.float32) >>> b = Tensor(np.array([0.4, 0.5, 0.9]), mindspore.float32) >>> x = Tensor(np.array([0.2, 0.6, 0.5]), mindspore.float32) >>> betainc = ops.Betainc() >>> print(betainc(a, b, x)) [0.41462693 0.8706035 0.7298298 ] """ @prim_arg_register def __init__(self): pass def __call__(self, a, b, x): return super().__call__(a, b, x) betainc_op=Betainc() class BiasAddGrad(Primitive): r""" Computes gradients of BiasAdd. """ @prim_arg_register def __init__(self, data_format='NCHW'): self._set_prim_arg_with_handler("data_format", data_format, str_to_enum) def __call__(self, dout): return super().__call__(dout, self.data_format)
[文档]class BiasAdd(Primitive): r""" Returns the sum of the input Tensor and the bias Tensor. Before adding, the bias Tensor will be broadcasted to be consistent with the shape of the input Tensor. Args: data_format (str, optional): The format of input and output data. It should be ``"NHWC"`` , ``"NCHW"`` or ``"NCDHW"`` . Default is ``"NCHW"`` . Inputs: - **input_x** (Tensor) - The input tensor. The shape can be 2-5 dimensions. Supported dtypes: - Ascend/CPU: all Number type. - GPU: float16, float32, int8. - **bias** (Tensor) - The bias tensor, with shape :math:`(C)`. C must be the same as channel dimension C of `input_x`. It has the same type as `input_x`. Outputs: Tensor, with the same shape and data type as `input_x`. Raises: TypeError: If `data_format` is not a str. ValueError: If value of `data_format` is not in the range of ['NHWC','NCHW','NCDHW']. TypeError: If `input_x` or `bias` is not a Tensor. TypeError: If dtype of `input_x` or `bias` is inconsistent. TypeError: If dimension of `input_x` is not in the range [2, 5]. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_x = Tensor(np.arange(6).reshape((2, 3)), mindspore.float32) >>> bias = Tensor(np.random.random(3).reshape((3,)), mindspore.float32) >>> bias_add = ops.BiasAdd() >>> output = bias_add(input_x, bias) >>> print(output.shape) (2, 3) """ @prim_arg_register def __init__(self, data_format='NCHW'): self._set_prim_arg_with_handler("data_format", data_format, str_to_enum) def __call__(self, input_x, bias): return super().__call__(input_x, bias, self.data_format)
class BoolNot(Primitive): r""" Returns bool_not `not` of bool input. .. note:: The inputs can be constant/variable value. Usage is the same as 'not' in Python. This primitive only have 'CPU' implementation, for other platform, it runs using heterogeneous. Inputs: - **x** (Scalar) - A constant or variable scalar, the type can be bool. Outputs: Scalar, the type is bool. Raises: TypeError: If `x` are not bool scalar. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` """ @prim_arg_register def __init__(self): pass def __call__(self, x): return super().__call__(x) bool_not_op=BoolNot()
[文档]class BroadcastTo(Primitive): r""" .. code-block:: prim = ops.BroadcastTo(shape) out = prim(input) is equivalent to .. code-block:: ops.broadcast_to(input, shape) Refer to :func:`mindspore.ops.broadcast_to` for more details. """ @prim_arg_register def __init__(self, shape): self._set_prim_arg("shape", type_it('BroadcastTo', 'shape', shape, (OpDtype.DT_LIST_INT, OpDtype.DT_TENSOR), OpDtype.DT_TUPLE_INT)) def __call__(self, input): return _convert_stub(pyboost_broadcast_to(self, [input, self.shape]))
[文档]class Ceil(Primitive): r""" .. code-block:: prim = ops.Ceil() out = prim(input) is equivalent to .. code-block:: ops.ceil(input) Refer to :func:`mindspore.ops.ceil` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return _convert_stub(pyboost_ceil(self, [input]))
ceil_op=Ceil()
[文档]class CeLU(Primitive): r""" .. code-block:: prim = ops.CeLU(alpha) out = prim(x) is equivalent to .. code-block:: ops.celu(x, alpha) Refer to :func:`mindspore.ops.celu` for more details. """ @prim_arg_register def __init__(self, alpha=1.0): self._set_prim_arg("alpha", alpha) def __call__(self, x): return super().__call__(x, self.alpha)
class CholeskyGrad(Primitive): r""" Computes the reverse mode backpropgated gradient of the Cholesky algorithm. Args: - **x** (Tensor) - A tensor with float32 or float64 data type. - **grad** (Tensor) - A tensor with float32 or float64 data type. `grad` should have the same dtype with `x`. Outputs: Tensor, has the same dtype as `a` and `x`. Raises: TypeError: If x is not Tensor. TypeError: If grad is not Tensor. TypeError: If dtype of input x and grad is not float64 nor float32, TypeError: If x has different dtype with grad. ValueError: If input tensor's last two dims are not equal, ValueError: If the shape of x and grad mismatch. Supported Platforms: ``Ascend`` """ @prim_arg_register def __init__(self): pass def __call__(self, x, grad): return super().__call__(x, grad) cholesky_grad_op=CholeskyGrad() class CholeskyInverse(Primitive): r""" Returns the inverse of the positive definite matrix using cholesky matrix factorization given its Cholesky factor. Refer to :func:`mindspore.ops.cholesky_inverse` for more details. Args: upper(bool, optional): Whether to return a lower or upper triangular matrix. Default: ``False`` . Inputs: - **x** (Tensor) - The input tensor whose rank is 2. Supported dtypes: float32, float64. Outputs: Tensor, has the same shape and dtype as `x`. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> x = Tensor(np.array([[1, 1], [1, 2]), mindspore.float32) >>> y = ops.CholeskyInverse()(x) >>> print(y) [[ 5.0 -3.0 ] [-3.0 2.0 ]] """ @prim_arg_register def __init__(self, upper=False): self._set_prim_arg("upper", upper) def __call__(self, input_x): return super().__call__(input_x, self.upper)
[文档]class Cholesky(Primitive): r""" Performs the Cholesky decomposition on a single or a batch of symmetric positive-definite matrices. .. warning:: This is an experimental API that is subject to change or deletion. Refer to :func:`mindspore.ops.cholesky` for more details. Args: upper (bool, optional): Flag that indicates whether to return a upper or lower triangular matrix. Default: ``False`` . Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(*, N, N)`, where :math:`*` is zero or more batch dimensions consisting of symmetric positive-definite matrices, with float32 or float64 data type. Outputs: Tensor, has the same shape and data type as `input_x`. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_x = Tensor(np.array([[1.0, 1.0], [1.0, 2.0]]), mindspore.float32) >>> output = ops.Cholesky()(input_x) >>> print(output) [[1. 0.] [1. 1.]] """ @prim_arg_register def __init__(self, upper=False): self._set_prim_arg("upper", upper) def __call__(self, input_x): return super().__call__(input_x, self.upper)
[文档]class Complex(Primitive): r""" Returns a complex Tensor from the real part and the imag part. .. warning:: This is an experimental API that is subject to change or deletion. Inputs: - **real** (Tensor) - The real input tensor. types: float32, float64. - **imag** (Tensor) - The imag input tensor. types: float32, float64. Outputs: Tensor, has the complex type. Raises: TypeError: If the dtype of input is not one of: float32, float64. TypeError: If the dtypes of two inputs are not same. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> real = Tensor(np.array([1]), mindspore.float32) >>> imag = Tensor(np.array([2]), mindspore.float32) >>> complex = ops.Complex() >>> output = complex(real, imag) >>> print(output) [1.+2.j] """ @prim_arg_register def __init__(self): pass def __call__(self, real, imag): return super().__call__(real, imag)
complex_op=Complex()
[文档]class Concat(Primitive): r""" .. code-block:: prim = ops.Concat(axis) out = prim(tensors) is equivalent to .. code-block:: ops.cat(tensors, axis) Refer to :func:`mindspore.ops.cat` for more details. """ @prim_arg_register def __init__(self, axis=0): self._set_prim_arg("axis", axis) def __call__(self, tensors): return _convert_stub(pyboost_concat(self, [tensors, self.axis]))
[文档]class Conj(Primitive): r""" .. code-block:: prim = ops.Conj() out = prim(input) is equivalent to .. code-block:: ops.conj(input) Refer to :func:`mindspore.ops.conj` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
conj_op=Conj() class Contiguous(Primitive): r""" .. code-block:: prim = ops.Contiguous() out = prim(input) is equivalent to .. code-block:: ops.contiguous(input) Refer to :func:`mindspore.ops.contiguous` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return _convert_stub(pyboost_contiguous(self, [input])) contiguous_op=Contiguous() class Copy(Primitive): r""" .. code-block:: prim = ops.Copy() out = prim(input) is equivalent to .. code-block:: ops.copy(input) Refer to :func:`mindspore.ops.copy` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return _convert_stub(pyboost_copy(self, [input])) copy_op=Copy() class Correlate(Primitive): r""" .. code-block:: prim = ops.Correlate(mode) out = prim(a, v) is equivalent to .. code-block:: ops.correlate(a, v, mode) Refer to :func:`mindspore.ops.correlate` for more details. """ @prim_arg_register def __init__(self, mode='valid'): self._set_prim_arg_with_handler("mode", mode, str_to_enum) def __call__(self, a, v): return super().__call__(a, v, self.mode)
[文档]class Cos(Primitive): r""" .. code-block:: prim = ops.Cos() out = prim(input) is equivalent to .. code-block:: ops.cos(input) Refer to :func:`mindspore.ops.cos` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return _convert_stub(pyboost_cos(self, [input]))
cos_op=Cos()
[文档]class Cosh(Primitive): r""" .. code-block:: prim = ops.Cosh() out = prim(input) is equivalent to .. code-block:: ops.cosh(input) Refer to :func:`mindspore.ops.cosh` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
cosh_op=Cosh()
[文档]class CumProd(Primitive): r""" Computes the cumulative product of the tensor x along axis. For example, if input is a vector of size N, the result will also be a vector of size N, with elements. .. math:: y_i = x_1 * x_2 * x_3 * ... * x_i Args: exclusive (bool): If ``True`` , perform exclusive cumulative product. Default: ``False`` . reverse (bool): If ``True`` , reverse the result along axis. Default: ``False`` . Inputs: - **x** (Tensor[Number]) - The input Tensor with shape :math:`(N, *)` where :math:`*` means any number of additional dimensions. - **axis** (int) - The dimensions to compute the cumulative product. Only constant value is allowed. Outputs: Tensor, has the same shape and dtype as the `x`. Raises: TypeError: If `exclusive` or `reverse` is not a bool. TypeError: If `axis` is not an int. ValueError: If `axis` is None. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor, ops >>> a, b, c, = 1, 2, 3 >>> x = Tensor(np.array([a, b, c]).astype(np.float32)) >>> op0 = ops.CumProd() >>> output0 = op0(x, 0) # output=[a, a * b, a * b * c] >>> op1 = ops.CumProd(exclusive=True) >>> output1 = op1(x, 0) # output=[1, a, a * b] >>> op2 = ops.CumProd(reverse=True) >>> output2 = op2(x, 0) # output=[a * b * c, b * c, c] >>> op3 = ops.CumProd(exclusive=True, reverse=True) >>> output3 = op3(x, 0) # output=[b * c, c, 1] >>> print(output0) [1. 2. 6.] >>> print(output1) [1. 1. 2.] >>> print(output2) [6. 6. 3.] >>> print(output3) [6. 3. 1.] >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [5, 3, 5]]).astype(np.float32)) >>> output4 = op0(x, 0) >>> output5 = op0(x, 1) >>> print(output4) [[ 1. 2. 3.] [ 4. 10. 18.] [20. 30. 90.]] >>> print(output5) [[ 1. 2. 6.] [ 4. 20. 120.] [ 5. 15. 75.]] """ @prim_arg_register def __init__(self, exclusive=False, reverse=False): self._set_prim_arg("exclusive", exclusive) self._set_prim_arg("reverse", reverse) def __call__(self, x, axis): return super().__call__(x, axis, self.exclusive, self.reverse)
[文档]class CumSum(Primitive): r""" Computes the cumulative sum of input tensor along axis. .. math:: y_i = x_1 + x_2 + x_3 + ... + x_i Args: exclusive (bool): By default, this op performs an inclusive cumsum, which means that the first element of the input is identical to the first element of the output. Default: ``False`` . reverse (bool): If ``True`` , perform inverse cumulative sum. Default: ``False`` . Inputs: - **input** (Tensor) - The input Tensor with shape :math:`(N, *)` where :math:`*` means any number of additional dimensions. - **axis** (int) - The axis to accumulate the tensor's value. Only constant value is allowed. Must be in the range [-rank(input), rank(input)). Outputs: Tensor, the shape of the output tensor is consistent with the input tensor's. Raises: TypeError: If `exclusive` or `reverse` is not a bool. TypeError: If `axis` is not an int. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32)) >>> cumsum = ops.CumSum() >>> # case 1: along the axis 0 >>> y = cumsum(x, 0) >>> print(y) [[ 3. 4. 6. 10.] [ 4. 10. 13. 19.] [ 8. 13. 21. 26.] [ 9. 16. 28. 35.]] >>> # case 2: along the axis 1 >>> y = cumsum(x, 1) >>> print(y) [[ 3. 7. 13. 23.] [ 1. 7. 14. 23.] [ 4. 7. 15. 22.] [ 1. 4. 11. 20.]] >>> # Next demonstrate exclusive and reverse, along axis 1 >>> # case 3: exclusive = True >>> cumsum = ops.CumSum(exclusive=True) >>> y = cumsum(x, 1) >>> print(y) [[ 0. 3. 7. 13.] [ 0. 1. 7. 14.] [ 0. 4. 7. 15.] [ 0. 1. 4. 11.]] >>> # case 4: reverse = True >>> cumsum = ops.CumSum(reverse=True) >>> y = cumsum(x, 1) >>> print(y) [[23. 20. 16. 10.] [23. 22. 16. 9.] [22. 18. 15. 7.] [20. 19. 16. 9.]] """ @prim_arg_register def __init__(self, exclusive=False, reverse=False): self._set_prim_arg("exclusive", exclusive) self._set_prim_arg("reverse", reverse) def __call__(self, input, axis): return super().__call__(input, axis, self.exclusive, self.reverse)
[文档]class Cummax(Primitive): r""" .. code-block:: prim = ops.Cummax(axis) out = prim(input) is equivalent to .. code-block:: ops.cummax(input, axis) Refer to :func:`mindspore.ops.cummax` for more details. """ @prim_arg_register def __init__(self, axis): self._set_prim_arg("axis", axis) def __call__(self, input): return super().__call__(input, self.axis)
[文档]class Cummin(Primitive): r""" Returns the cumulative minimum of elements and the index. .. warning:: This is an experimental API that is subject to change or deletion. Refer to :func:`mindspore.ops.cummin` for more detail. Args: axis (int): The axis to accumulate the tensor's value. Must be in the range [-rank(input), rank(input)). Inputs: - **input** (Tensor) - The input tensor. Outputs: A tuple of 2 Tensors(values, indices), containing the cumulative minimum of elements and the index, the shape of each output tensor is the same as input `input`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import Tensor, ops >>> import mindspore >>> a = Tensor([-0.2284, -0.6628, 0.0975, 0.2680, -1.3298, -0.4220], mindspore.float32) >>> axis = 0 >>> output = ops.Cummin(axis)(a) >>> print(output[0]) [-0.2284 -0.6628 -0.6628 -0.6628 -1.3298 -1.3298] >>> print(output[1]) [0 1 1 1 4 4] """ @prim_arg_register def __init__(self, axis): self._set_prim_arg("axis", axis) def __call__(self, input): return super().__call__(input, self.axis)
class DCT(Primitive): r""" """ __mindspore_signature__ = ( sig.make_sig('x'), sig.make_sig('type'), sig.make_sig('n'), sig.make_sig('axis', default=-1), sig.make_sig('norm', default='BACKWARD'), sig.make_sig('forward', default=True), sig.make_sig('grad', default=False), ) @prim_arg_register def __init__(self): pass def __call__(self, x, type, n, axis=-1, norm='BACKWARD', forward=True, grad=False): return super().__call__(x, type, n, axis, str_to_enum('DCT', 'norm', norm), forward, grad) dct_op=DCT() class DecoderKVCache(Primitive): r""" .. code-block:: prim = ops.DecoderKVCache() out = prim(cache, update, valid_seq_len, batch_index, seq_len_axis, new_max_seq_len, cur_max_seq_len) is equivalent to .. code-block:: ops.decoder_k_v_cache(cache, update, valid_seq_len, batch_index, seq_len_axis, new_max_seq_len, cur_max_seq_len) Refer to :func:`mindspore.ops.decoder_k_v_cache` for more details. """ @prim_arg_register def __init__(self): self.add_prim_attr("side_effect_mem", True) def __call__(self, cache, update, valid_seq_len, batch_index, seq_len_axis, new_max_seq_len, cur_max_seq_len): return super().__call__(cache, update, valid_seq_len, batch_index, seq_len_axis, new_max_seq_len, cur_max_seq_len) decoder_k_v_cache_op=DecoderKVCache()
[文档]class Diag(Primitive): r""" .. code-block:: prim = ops.Diag() out = prim(input) is equivalent to .. code-block:: ops.diag(input) Refer to :func:`mindspore.ops.diag` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
diag_op=Diag() class Diagonal(Primitive): r""" .. code-block:: prim = ops.Diagonal(offset, dim1, dim2) out = prim(input) is equivalent to .. code-block:: ops.diagonal(input, offset, dim1, dim2) Refer to :func:`mindspore.ops.diagonal` for more details. """ @prim_arg_register def __init__(self, offset=0, dim1=0, dim2=1): self._set_prim_arg("offset", offset) self._set_prim_arg("dim1", dim1) self._set_prim_arg("dim2", dim2) def __call__(self, input): return super().__call__(input, self.offset, self.dim1, self.dim2)
[文档]class Div(Primitive): r""" Computes the quotient of dividing the first input tensor by the second input tensor element-wise. Refer to :func:`mindspore.ops.div` for more details. Note: - One of the two inputs must be a Tensor, when the two inputs have different shapes, they must be able to broadcast to a common shape. - The two inputs can not be bool type at the same time, [True, Tensor(True, bool\_), Tensor(np.array([True]), bool\_)] are all considered bool type. - The two inputs comply with the implicit type conversion rules to make the data types consistent. Inputs: - **x** (Union[Tensor, number.Number, bool]) - The first input is a number.Number or a bool or a tensor whose data type is `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_ or `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_. - **y** (Union[Tensor, number.Number, bool]) - The second input is a number.Number or a bool or a tensor whose data type is `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_ or `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_. Outputs: Tensor, the shape is the same as the one of the input `x` , `y` after broadcasting, and the data type is the one with higher precision or higher digits among the two inputs. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> # case 1 :has same data type and shape of the two inputs >>> x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32) >>> y = Tensor(np.array([3.0, 2.0, 3.0]), mindspore.float32) >>> div = ops.Div() >>> output = div(x, y) >>> print(output) [-1.3333334 2.5 2. ] >>> # case 2 : different data type and shape of the two inputs >>> x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32) >>> y = Tensor(2, mindspore.int32) >>> output = div(x, y) >>> print(output) [-2. 2.5 3.] >>> print(output.dtype) Float32 """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, x, y): return _convert_stub(pyboost_div(self, [x, y]))
div_op=Div()
[文档]class Dropout(Primitive): r""" During training, randomly zeroes some of the elements of the input tensor with probability :math:`1 - keep\_prob` from a Bernoulli distribution. It plays the role of reducing neuron correlation and avoid overfitting. Refer to :func:`mindspore.ops.dropout` for more details. Args: keep_prob (float, optional): The keep rate, between 0 and 1, e.g. keep_prob = 0.9, means dropping out 10% of input units. Default: ``0.5`` . Seed0 (int, optional): Seed0 value for random generating. Default: ``0`` . Seed1 (int, optional): Seed1 value for random generating. Default: ``0`` . Inputs: - **x** (Tensor) - The input Tensor of shape :math:`(*, N)`, with data type of float16, float32 or float64. Outputs: - **output** (Tensor) - With the same shape and data type as `x`. - **mask** (Tensor) - The mask applied to `x`. - On GPU and CPU, `mask` has the same shape and data type as `x`. - On Ascend, to achieve a better performance, it is denoted as a 1-D Tensor with Uint8 data type. It has shape :math:`(byte\_counts, )` where :math:`byte\_counts` is the number of bytes needed to mask the input `x`, :math:`byte\_counts` is calculated using the following formula: .. math:: byte\_counts = \text{ceil}(\text{cumprod}(x.shape) / 128) * 16 If shape of `x` is :math:`(2, 3, 4, 5, 6)`, the shape of `mask` will be :math:`(96, )`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> dropout = ops.Dropout(keep_prob=0.5) >>> x = Tensor(np.ones([1, 2, 3, 4, 5]), mindspore.float32) >>> output, mask = dropout(x) >>> print(output.shape, mask.shape, mask.dtype) (1, 2, 3, 4, 5) (16,) UInt8 """ @prim_arg_register def __init__(self, keep_prob=0.5, Seed0=0, Seed1=0): self._set_prim_arg("keep_prob", keep_prob) self._set_prim_arg("Seed0", Seed0) self._set_prim_arg("Seed1", Seed1) self.add_prim_attr("side_effect_hidden", True) def __call__(self, x): return super().__call__(x, self.keep_prob, self.Seed0, self.Seed1)
class Eig(Primitive): r""" Computes the eigenvalues and eigenvectors of a square matrix(batch square matrices). Args: compute_v (bool, optional): If ``True`` , compute both eigenvalues and eigenvectors; If `False`, just eigenvalues will be computed. Default: ``False`` . Inputs: - **x** (Tensor) - Square matrices of shape :math:`(*, N, N)`, with float32, float64, complex64 or complex128 data type. Outputs: - **eigen_values** (Tensor) - Shape :math:`(*, N)`. Each inner most vector represents eigenvalues of the corresponding matrix. The eigenvalues may not have an order. - **eigen_vectors** (Tensor) - If `compute_v` is `False`, it's an empty tensor. Otherwise, this tensor has shape :math:`(*, N, N)`, whose columns represent normalized (unit length) eigenvectors of corresponding eigenvalues. Raises: TypeError: If `compute_v` is not a bool. TypeError: If dtype of `x` is not one of: float64, float32, complex64 or complex128. TypeError: If `x` is not a Tensor. ValueError: If `x` is not a square(batch squares). Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([[1.0, 0.0], [0.0, 2.0]]), mindspore.float32) >>> u, v = ops.Eig(True)(x) >>> print(u) [1.+0.j 2.+0.j] >>> print(v) [[1.+0.j 0.+0.j] [0.+0.j 1.+0.j]] """ @prim_arg_register def __init__(self, compute_v=False): self._set_prim_arg("compute_v", compute_v) def __call__(self, x): return super().__call__(x, self.compute_v) class EluGrad(Primitive): r""" Gradients of Elu operation. """ @prim_arg_register def __init__(self): pass def __call__(self, dout, out): return super().__call__(dout, out) elu_grad_op=EluGrad()
[文档]class Elu(Primitive): r""" .. code-block:: prim = ops.Elu(alpha) out = prim(input_x) is equivalent to .. code-block:: ops.elu(input_x, alpha) Refer to :func:`mindspore.ops.elu` for more details. """ @prim_arg_register def __init__(self, alpha=1.0): self._set_prim_arg("alpha", alpha) def __call__(self, input_x): return super().__call__(input_x, self.alpha)
[文档]class Equal(Primitive): r""" .. code-block:: prim = ops.Equal() out = prim(input, other) is equivalent to .. code-block:: ops.equal(input, other) Refer to :func:`mindspore.ops.equal` for more details. """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, input, other): return _convert_stub(pyboost_equal(self, [input, other]))
equal_op=Equal()
[文档]class Erf(Primitive): r""" .. code-block:: prim = ops.Erf() out = prim(input) is equivalent to .. code-block:: ops.erf(input) Refer to :func:`mindspore.ops.erf` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
erf_op=Erf()
[文档]class Erfc(Primitive): r""" .. code-block:: prim = ops.Erfc() out = prim(input) is equivalent to .. code-block:: ops.erfc(input) Refer to :func:`mindspore.ops.erfc` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
erfc_op=Erfc()
[文档]class Erfinv(Primitive): r""" .. code-block:: prim = ops.Erfinv() out = prim(input) is equivalent to .. code-block:: ops.erfinv(input) Refer to :func:`mindspore.ops.erfinv` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return _convert_stub(pyboost_erfinv(self, [input]))
erfinv_op=Erfinv()
[文档]class Exp(Primitive): r""" .. code-block:: prim = ops.Exp() out = prim(input) is equivalent to .. code-block:: ops.exp(input) Refer to :func:`mindspore.ops.exp` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return _convert_stub(pyboost_exp(self, [input]))
exp_op=Exp()
[文档]class ExpandDims(Primitive): r""" .. code-block:: prim = ops.ExpandDims() out = prim(input_x, axis) is equivalent to .. code-block:: ops.expand_dims(input_x, axis) Refer to :func:`mindspore.ops.expand_dims` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input_x, axis): return super().__call__(input_x, axis)
expand_dims_op=ExpandDims()
[文档]class Expm1(Primitive): r""" .. code-block:: prim = ops.Expm1() out = prim(input) is equivalent to .. code-block:: ops.expm1(input) Refer to :func:`mindspore.ops.expm1` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
expm1_op=Expm1() class ExtractImagePatches(Primitive): r""" .. code-block:: prim = ops.ExtractImagePatches(ksizes, strides, rates, padding) out = prim(input_x) is equivalent to .. code-block:: ops.extract_image_patches(input_x, ksizes, strides, rates, padding) Refer to :func:`mindspore.ops.extract_image_patches` for more details. """ @prim_arg_register def __init__(self, ksizes, strides, rates, padding='VALID'): self._set_prim_arg_with_handler("ksizes", type_it('ExtractImagePatches', 'ksizes', ksizes, OpDtype.DT_LIST_INT, OpDtype.DT_TUPLE_INT), to_kernel_size) self._set_prim_arg_with_handler("strides", type_it('ExtractImagePatches', 'strides', strides, OpDtype.DT_LIST_INT, OpDtype.DT_TUPLE_INT), to_strides) self._set_prim_arg_with_handler("rates", type_it('ExtractImagePatches', 'rates', rates, OpDtype.DT_LIST_INT, OpDtype.DT_TUPLE_INT), to_rates) self._set_prim_arg_with_handler("padding", padding, str_to_enum) def __call__(self, input_x): return super().__call__(input_x, self.ksizes, self.strides, self.rates, self.padding)
[文档]class Eye(Primitive): r""" Creates a tensor with ones on the diagonal and zeros in the rest. Refer to :func:`mindspore.ops.eye` for more details. Note: The data type of returned tensor can be float16, float32, int8, int16, int32, int64, uint8 or bool on Ascend platforms. Inputs: - **n** (int) - The number of rows of returned tensor. Constant value only. - **m** (int) - The number of columns of returned tensor. Constant value only. - **t** (mindspore.dtype) - MindSpore's dtype, the data type of the returned tensor. Default: ``None`` , the data type of the returned tensor is mindspore.float32. Outputs: Tensor, a tensor with ones on the diagonal and the rest of elements are zero. The shape of `output` depends on the user's Inputs `n` and `m`. And the data type depends on Inputs `t`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> from mindspore import ops >>> eye = ops.Eye() >>> output = eye(2, 2, mindspore.int32) >>> print(output) [[1 0] [0 1]] >>> print(output.dtype) Int32 >>> output = eye(1, 2, mindspore.float32) >>> print(output) [[1. 0.]] >>> print(output.dtype) Float32 """ @prim_arg_register def __init__(self): pass def __call__(self, n, m, dtype): return super().__call__(n, m, dtype_to_type_id('Eye', 'dtype', dtype))
eye_op=Eye() class FastGeLUGrad(Primitive): r""" Gradients of FastGeLU operation. """ @prim_arg_register def __init__(self): pass def __call__(self, dy, x): return super().__call__(dy, x) fast_gelu_grad_op=FastGeLUGrad()
[文档]class FastGeLU(Primitive): r""" .. code-block:: prim = ops.FastGeLU() out = prim(x) is equivalent to .. code-block:: ops.fast_gelu(x) Refer to :func:`mindspore.ops.fast_gelu` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, x): return super().__call__(x)
fast_gelu_op=FastGeLU() class FFT2(Primitive): r""" .. code-block:: prim = ops.FFT2() out = prim(input, s, dim, norm) is equivalent to .. code-block:: ops.fft2(input, s, dim, norm) Refer to :func:`mindspore.ops.fft2` for more details. """ __mindspore_signature__ = ( sig.make_sig('input'), sig.make_sig('s', default=None), sig.make_sig('dim', default=(-2, -1)), sig.make_sig('norm', default=None), ) @prim_arg_register def __init__(self): pass def __call__(self, input, s=None, dim=(-2, -1), norm=None): return super().__call__(input, s, dim, norm if norm is None else str_to_enum('FFT2', 'norm', norm)) fft2_op=FFT2() class FFT(Primitive): r""" .. code-block:: prim = ops.FFT() out = prim(input, n, dim, norm) is equivalent to .. code-block:: ops.fft(input, n, dim, norm) Refer to :func:`mindspore.ops.fft` for more details. """ __mindspore_signature__ = ( sig.make_sig('input'), sig.make_sig('n', default=None), sig.make_sig('dim', default=-1), sig.make_sig('norm', default=None), ) @prim_arg_register def __init__(self): pass def __call__(self, input, n=None, dim=-1, norm=None): return super().__call__(input, n, dim, norm if norm is None else str_to_enum('FFT', 'norm', norm)) fft_op=FFT() class FFTShapeCopy(Primitive): r""" Truncate or zero-fill the gradient of an fft operation. """ @prim_arg_register def __init__(self): pass def __call__(self, dout, shape): return super().__call__(dout, shape) fft_shapecopy_op=FFTShapeCopy()
[文档]class FFTWithSize(Primitive): r""" Fourier transform, can be adjusted by parameters to achieve FFT/IFFT/RFFT/IRFFT. For fft, it computes the following expression: .. math:: X[\omega_1, \dots, \omega_d] = \sum_{n_1=0}^{N_1-1} \dots \sum_{n_d=0}^{N_d-1} x[n_1, \dots, n_d] e^{-j\ 2 \pi \sum_{i=0}^d \frac{\omega_i n_i}{N_i}}, where :math:`d` = `signal_ndim` is number of dimensions for the signal, and :math:`N_i` is the size of signal dimension :math:`i`. For ifft, it computes the following expression: .. math:: X[\omega_1, \dots, \omega_d] = \frac{1}{\prod_{i=1}^d N_i} \sum_{n_1=0}^{N_1-1} \dots \sum_{n_d=0}^{N_d-1} x[n_1, \dots, n_d] e^{\ j\ 2 \pi \sum_{i=0}^d \frac{\omega_i n_i}{N_i}}, where :math:`d` = `signal_ndim` is number of dimensions for the signal, and :math:`N_i` is the size of signal dimension :math:`i`. Note: - FFT/IFFT requires complex64 or complex128 inputs, return complex64 or complex128 outputs. - RFFT requires bool, uint8, int8, int16, int32, int64, float32 and float64 inputs, return complex64 or complex128 outputs. - IRFFT requires complex64 or complex128 inputs, return float32 or float64 outputs. .. warning:: This is an experimental API that is subject to change or deletion. Args: signal_ndim (int): The number of dimensions in each signal, this controls how many dimensions of the fourier transform are realized, can only be 1, 2 or 3. inverse (bool): Whether it is the inverse transformation, used to select from FFT and RFFT or IFFT and IRFFT. - when set to ``True``: IFFT and IRFFT. - when set to ``False``: FFT and RFFT. real (bool): Whether it is the real transformation, combines with `inverse` to select a specific transformation mode: - `inverse` is ``False`` , `real` is ``False`` : corresponds to FFT. - `inverse` is ``True`` , `real` is ``False`` : corresponds to IFFT. - `inverse` is ``False`` , `real` is ``True`` : corresponds to RFFT. - `inverse` is ``True`` , `real` is ``True`` : corresponds to IRFFT. norm (str, optional): The normalization, optional values: [ ``"backward"`` , ``"forward"`` , ``"ortho"`` ]. Default value: ``"backward"`` . - ``"backward"`` has the direct transforms unscaled and the inverse transforms scaled by :math:`1/n`, where n is the input x's element numbers. - ``"ortho"`` has both direct and inverse transforms are scaled by :math:`1/\sqrt n`. - ``"forward"`` has the direct transforms scaled by :math:`1/n` and the inverse transforms unscaled. onesided (bool, optional): Controls whether the input is halved to avoid redundancy. Default: ``True`` . signal_sizes (tuple, optional): Size of the original signal (the signal before rfft, no batch dimension), only in IRFFT mode and set `onesided` to ``True`` requires the parameter, the following conditions must be satisfied. Default: ``()`` . - The length of `signal_sizes` is equal to the signal_ndim of the IRFFT: :math:`len(signal\_sizes)=signal\_ndim`. - The last dimension of `signal_sizes` divided by 2 is equal to the last dimension of the IRFFT input: :math:`signal\_size[-1]/2+1=x.shape[-1]`. - `signal_sizes` has exactly the same dimensions as the input shape except for the last dimension: :math:`signal\_sizes[:-1]=x.shape[:-1]`. Inputs: - **x** (Tensor) - The dimension of the input tensor must be greater than or equal to signal_ndim. Outputs: A tensor containing the complex-to-complex, real-to-complex or complex-to-real Fourier transform result. Raises: TypeError: If the input type of FFT/IFFT/IRFFT is not one of: complex64, complex128. TypeError: If the input type is not Tensor. ValueError: If `x` dimension is less than signal_ndim. ValueError: If signal_ndim is greater than 3 or less than 1. ValueError: If norm is none of "backward", "forward" or "ortho". Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> # case FFT: signal_ndim: 1, inverse: False, real: False. >>> fft_in = Tensor(np.array([2, 1, 2]), mindspore.complex64) >>> fft_net = ops.FFTWithSize(signal_ndim=1, inverse=False, real=False) >>> fft_output = fft_net(fft_in) >>> print(fft_output) [5. +0.j 0.5 +0.86602545j 0.50000006-0.8660255j ] >>> # case IFFT: signal_ndim: 1, inverse: True, real: False. >>> ifft_in = fft_output >>> ifft_net = ops.FFTWithSize(signal_ndim=1, inverse=True, real=False) >>> ifft_output = ifft_net(ifft_in) >>> print(ifft_output) [2. -1.9868216e-08j 0.99999994+0.0000000e+00j 1.9999999 +7.9472862e-08j] >>> # case RFFT2D: signal_ndim: 2, inverse: False, real: True. >>> rfft_in = Tensor(np.array([[2, 1, 2], [3, 1, 6]]), mindspore.float32) >>> rfft_net = ops.FFTWithSize(signal_ndim=2, inverse=False, real=True) >>> rfft_output = rfft_net(rfft_in) >>> print(rfft_output) [[ 1.5000000e+01+1.1920929e-07j -2.3841858e-07+5.1961522e+00j] [-5.0000000e+00-2.9802322e-08j 9.9999988e-01-3.4641016e+00j]] >>> # case IRFFT2D: signal_ndim: 2, inverse: True, real: True. >>> irfft_in = rfft_output >>> irfft_net = ops.FFTWithSize(signal_ndim=2, inverse=True, real=True, signal_sizes=rfft_in.shape) >>> irfft_output = irfft_net(irfft_in) >>> print(irfft_output) [[2. 1. 2. ] [3. 0.99999994 5.9999995 ]] """ @prim_arg_register def __init__(self, signal_ndim, inverse, real, norm='backward', onesided=True, signal_sizes=()): self._set_prim_arg("signal_ndim", signal_ndim) self._set_prim_arg("inverse", inverse) self._set_prim_arg("real", real) self._set_prim_arg_with_handler("norm", norm, str_to_enum) self._set_prim_arg("onesided", onesided) self._set_prim_arg("signal_sizes", signal_sizes) def __call__(self, x): return super().__call__(x, self.signal_ndim, self.inverse, self.real, self.norm, self.onesided, self.signal_sizes)
class FFTN(Primitive): r""" .. code-block:: prim = ops.FFTN() out = prim(input, s, dim, norm) is equivalent to .. code-block:: ops.fftn(input, s, dim, norm) Refer to :func:`mindspore.ops.fftn` for more details. """ __mindspore_signature__ = ( sig.make_sig('input'), sig.make_sig('s', default=None), sig.make_sig('dim', default=None), sig.make_sig('norm', default=None), ) @prim_arg_register def __init__(self): pass def __call__(self, input, s=None, dim=None, norm=None): return super().__call__(input, s, dim, norm if norm is None else str_to_enum('FFTN', 'norm', norm)) fftn_op=FFTN() class FFTShift(Primitive): r""" .. code-block:: prim = ops.FFTShift() out = prim(input, dim) is equivalent to .. code-block:: ops.fftshift(input, dim) Refer to :func:`mindspore.ops.fftshift` for more details. """ __mindspore_signature__ = ( sig.make_sig('input'), sig.make_sig('dim', default=None), ) @prim_arg_register def __init__(self): pass def __call__(self, input, dim=None): return super().__call__(input, dim) fftshift_op=FFTShift()
[文档]class Flatten(Primitive): r""" Flattens a tensor without changing its batch size on the 0-th axis. Refer to :func:`mindspore.ops.flatten` for more details. Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(N, \ldots)` to be flattened, where :math:`N` is batch size. Outputs: Tensor, the shape of the output tensor is :math:`(N, X)`, where :math:`X` is the product of the remaining dimension. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_x = Tensor(np.ones(shape=[1, 2, 3, 4]), mindspore.float32) >>> flatten = ops.Flatten() >>> output = flatten(input_x) >>> print(output.shape) (1, 24) """ @prim_arg_register def __init__(self): pass def __call__(self, input_x): return super().__call__(input_x)
flatten_op=Flatten()
[文档]class FloorDiv(Primitive): r""" .. code-block:: prim = ops.FloorDiv() out = prim(input, other) is equivalent to .. code-block:: ops.floor_divide(input, other) Refer to :func:`mindspore.ops.floor_divide` for more details. """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, input, other): return super().__call__(input, other)
floor_div_op=FloorDiv()
[文档]class FloorMod(Primitive): r""" .. code-block:: prim = ops.FloorMod() out = prim(x, y) is equivalent to .. code-block:: ops.floor_mod(x, y) Refer to :func:`mindspore.ops.floor_mod` for more details. """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, x, y): return super().__call__(x, y)
floor_mod_op=FloorMod()
[文档]class Floor(Primitive): r""" .. code-block:: prim = ops.Floor() out = prim(input) is equivalent to .. code-block:: ops.floor(input) Refer to :func:`mindspore.ops.floor` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
floor_op=Floor() class GatherDGradV2(Primitive): r""" Computes gradient for the GatherD operation. Note that the operator "GatherDGrad" has been abandoned. """ @prim_arg_register def __init__(self): pass def __call__(self, x, dim, index, dout): return _convert_stub(pyboost_gather_d_grad_v2(self, [x, dim, index, dout])) gather_d_grad_v2_op=GatherDGradV2()
[文档]class GatherD(Primitive): r""" .. code-block:: prim = ops.GatherD() out = prim(x, dim, index) is equivalent to .. code-block:: ops.gather_d(x, dim, index) Refer to :func:`mindspore.ops.gather_d` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, x, dim, index): return _convert_stub(pyboost_gather_d(self, [x, dim, index]))
gather_d_op=GatherD()
[文档]class GatherNd(Primitive): r""" .. code-block:: prim = ops.GatherNd() out = prim(input_x, indices) is equivalent to .. code-block:: ops.gather_nd(input_x, indices) Refer to :func:`mindspore.ops.gather_nd` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input_x, indices): return super().__call__(input_x, indices)
gather_nd_op=GatherNd()
[文档]class Gather(Primitive): r""" .. code-block:: prim = ops.Gather(batch_dims) out = prim(input_params, input_indices, axis) is equivalent to .. code-block:: ops.gather(input_params, input_indices, axis, batch_dims) Refer to :func:`mindspore.ops.gather` for more details. """ @prim_arg_register def __init__(self, batch_dims=0): self._set_prim_arg("batch_dims", batch_dims) def __call__(self, input_params, input_indices, axis): return super().__call__(input_params, input_indices, axis, self.batch_dims)
[文档]class Gcd(Primitive): r""" .. code-block:: prim = ops.Gcd() out = prim(input, other) is equivalent to .. code-block:: ops.gcd(input, other) Refer to :func:`mindspore.ops.gcd` for more details. """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, input, other): return super().__call__(input, other)
gcd_op=Gcd() class GeLUGrad(Primitive): r""" Gradients of GeLU operation. """ @prim_arg_register def __init__(self): pass def __call__(self, dy, x, y): return _convert_stub(pyboost_gelu_grad(self, [dy, x, y])) gelu_grad_op=GeLUGrad()
[文档]class GeLU(Primitive): r""" Gaussian Error Linear Units activation function. GeLU is described in the paper `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_. And also please refer to `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding <https://arxiv.org/abs/1810.04805>`_. GeLU is defined as follows: .. math:: GELU(x_i) = x_i*P(X < x_i) where :math:`P` is the cumulative distribution function of the standard Gaussian distribution, :math:`x_i` is the input element. Inputs: - **x** (Tensor) - The input of the activation function GeLU, the data type is float16, float32 or float64. Outputs: Tensor, with the same type and shape as `x`. Raises: TypeError: If `x` is not a Tensor. TypeError: If dtype of `x` is not float16, float32 or float64. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) >>> result = ops.GeLU()(x) >>> print(result) [0.841192 1.9545976 2.9963627] """ @prim_arg_register def __init__(self): pass def __call__(self, input): return _convert_stub(pyboost_gelu(self, [input]))
gelu_op=GeLU()
[文档]class Geqrf(Primitive): r""" .. code-block:: prim = ops.Geqrf() out = prim(input) is equivalent to .. code-block:: ops.geqrf(input) Refer to :func:`mindspore.ops.geqrf` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
geqrf_op=Geqrf()
[文档]class GreaterEqual(Primitive): r""" .. code-block:: prim = ops.GreaterEqual() out = prim(input, other) is equivalent to .. code-block:: ops.greater_equal(input, other) Refer to :func:`mindspore.ops.greater_equal` for more details. """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, input, other): return _convert_stub(pyboost_greater_equal(self, [input, other]))
greater_equal_op=GreaterEqual()
[文档]class Greater(Primitive): r""" .. code-block:: prim = ops.Greater() out = prim(input, other) is equivalent to .. code-block:: ops.greater(input, other) Refer to :func:`mindspore.ops.greater` for more details. """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, input, other): return _convert_stub(pyboost_greater(self, [input, other]))
greater_op=Greater() class GridSampler2DGrad(Primitive): r""" Computes gradients for GridSampler2D operation. Args: - **grad** (Tensor) - A 4-D tensor whose dtype is float16 or float32 and whose shape is :math:`(N, C, H_{out}, W_{out})`. The shape is inconsistent with the shape of the output result of forward calculation. - **input_x** (Tensor) - A 4-D tensor whose dtype is the same as `grad` and whose shape is :math:`(N, C, H_{in}, W_{in})`. - **grid** (Tensor) - A 4-D tensor whose dtype is the same as `grad` and whose shape is :math:`(N, H_{out}, W_{out}, 2)`. interpolation_mode (str): An optional string specifying the interpolation method. The optional values are "bilinear" or "nearest". Default: "bilinear". padding_mode (str): An optional string specifying the pad method. The optional values are "zeros", "border" or "reflection". Default: "zeros". align_corners (bool): An optional bool. If "true", the centers of the corner pixels of the input and output tensors are aligned. Defaults to "false". Returns: - **dx** (Tensor) - A 4-D tensor whose dtype and shape are the same as `input_x`. - **dgrid** (Tensor) - A 4-D tensor whose dtype and shape are the same as `grid`. Raises: TypeError: If `grad`, `input_x` or `grid` is not a Tensor. TypeError: If the dtypes of `grad`, `input_x` and `grid` are inconsistent. TypeError: If the dtype of `grad`, `input_x` or `grid` is not a valid type. TypeError: If `align_corners` is not a boolean value. ValueError: If the rank of `grad`, `input_x` or `grid` is not equal to 4. ValueError: If the first dimension of `grad`, `input_x` and `grid` are inconsistent. ValueError: If the last dimension of `grid` is not equal to 2. ValueError: If `interpolation_mode` is not "bilinear", "nearest" or a string value. ValueError: If `padding_mode` is not "zeros", "border", "reflection" or a string value. ValueError: If the shape of `grad` is inconsistent with the shape of the output result of forward calculation. Supported Platforms: ``GPU`` ``CPU`` """ @prim_arg_register def __init__(self, interpolation_mode='bilinear', padding_mode='zeros', align_corners=False): self._set_prim_arg_with_handler("interpolation_mode", interpolation_mode, str_to_enum) self._set_prim_arg_with_handler("padding_mode", padding_mode, str_to_enum) self._set_prim_arg("align_corners", align_corners) def __call__(self, grad, input_x, grid): return super().__call__(grad, input_x, grid, self.interpolation_mode, self.padding_mode, self.align_corners)
[文档]class GridSampler2D(Primitive): r""" This operation samples 2d `input_x` by using interpolation based on flow field grid, which is usually gennerated by :func:`mindspore.ops.affine_grid`. .. warning:: This is an experimental API that is subject to change or deletion. Refer to :func:`mindspore.ops.grid_sample` for more details. Args: interpolation_mode (str, optional): An optional string specifying the interpolation method. The optional values are ``"bilinear"`` or ``"nearest"`` . Default: ``"bilinear"`` . - ``"nearest"``: Nearest neighbor interpolation. Each output pixel is assigned the value of the nearest input pixel. This method is simple and fast but can result in blocky or pixelated outputs. - ``"bilinear"``: Bilinear interpolation. Each output pixel is a weighted average of the four nearest input pixels, computed using bilinear interpolation. This method produces smoother results compared to nearest neighbor interpolation. padding_mode (str, optional): An optional string specifying the pad method. The optional values are ``"zeros"`` , ``"border"`` or ``"reflection"`` . Default: ``"zeros"`` . When the sampling grid is outside input's bounds, effects of various padding modes are as follows: - ``"zeros"``: Pads the input tensor with zeros. - ``"border"``: Pads the input tensor with the values of the pixels on the border of the tensor. - ``"reflection"``: Pads the input tensor by reflecting the values of the pixels at the boundary of the tensor. align_corners (bool, optional): An optional bool. When set to ``True`` , the centers of the corner pixels of the input and output tensors are aligned. When set to ``False`` , it is not aligned. Default: ``False`` . Inputs: - **input_x** (Tensor) - A 4-D tensor with shape :math:`(N, C, H_{in}, W_{in})`. Supported dtypes: - Ascend: float16, float32. - GPU/CPU: float16, float32, float64. - **grid** (Tensor) - A 4-D tensor whose dtype is the same as `input_x` and whose shape is :math:`(N, H_{out}, W_{out}, 2)`. Used to specify the sampling pixel locations normalized by the input spatial dimensions. Outputs: A 4-D Tensor whose dtype is the same as `input_x` and whose shape is :math:`(N, C, H_{out}, W_{out})`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor, ops >>> gridsampler = ops.GridSampler2D(interpolation_mode='bilinear', padding_mode='zeros', align_corners=True) >>> input_x = Tensor(np.arange(16).reshape((2, 2, 2, 2)).astype(np.float32)) >>> grid = Tensor(np.arange(-9, 9, 0.5).reshape((2, 3, 3, 2)).astype(np.float32)) >>> output = gridsampler(input_x, grid) >>> print(output) [[[[ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 0. 0.5 ]] [[ 0. 0. 0. ] [ 0. 0. 0. ] [ 0. 1.5 4.5 ]]] [[[10. 8.25 1.375] [ 0. 0. 0. ] [ 0. 0. 0. ]] [[14. 11.25 1.875] [ 0. 0. 0. ] [ 0. 0. 0. ]]]] """ @prim_arg_register def __init__(self, interpolation_mode='bilinear', padding_mode='zeros', align_corners=False): self._set_prim_arg_with_handler("interpolation_mode", interpolation_mode, str_to_enum) self._set_prim_arg_with_handler("padding_mode", padding_mode, str_to_enum) self._set_prim_arg("align_corners", align_corners) def __call__(self, input_x, grid): return super().__call__(input_x, grid, self.interpolation_mode, self.padding_mode, self.align_corners)
class GridSampler3DGrad(Primitive): r""" Computes gradients for GridSampler3D operation. Args: - **grad** (Tensor) - A 5-D tensor whose dtype is float32 or float64 and whose shape is :math:`(N, C, D_{out}, H_{out}, W_{out})`. The shape is inconsistent with the shape of the output result of forward calculation. - **input_x** (Tensor) - A 5-D tensor whose dtype is the same as `grad` and whose shape is :math:`(N, C, D_{in}, H_{in}, W_{in})`. - **grid** (Tensor) - A 5-D tensor whose dtype is the same as `grad` and whose shape is :math:`(N, D_{out}, H_{out}, W_{out}, 3)`. interpolation_mode (str): An optional string specifying the interpolation method. The optional values are "bilinear" or "nearest". Default: "bilinear". padding_mode (str): An optional string specifying the pad method. The optional values are "zeros", "border" or "reflection". Default: "zeros". align_corners (bool): An optional bool. If "true", the centers of the corner pixels of the input and output tensors are aligned. Defaults to "false". Returns: - **dx** (Tensor) - A 5-D tensor whose dtype and shape are the same as `input_x`. - **dgrid** (Tensor) - A 5-D tensor whose dtype and shape are the same as `grid`. Raises: TypeError: If `grad`, `input_x` or `grid` is not a Tensor. TypeError: If the dtypes of `grad`, `input_x` and `grid` are inconsistent. TypeError: If the dtype of `grad`, `input_x` or `grid` is not a valid type. TypeError: If `align_corners` is not a boolean value. ValueError: If the rank of `grad`, `input_x` or `grid` is not equal to 5. ValueError: If the first dimension of `grad`, `input_x` and `grid` are inconsistent. ValueError: If the last dimension of `grid` is not equal to 3. ValueError: If `interpolation_mode` is not "bilinear", "nearest" or a string value. ValueError: If `padding_mode` is not "zeros", "border", "reflection" or a string value. ValueError: If the shape of `grad` is inconsistent with the shape of the output result of forward calculation. Supported Platforms: ``GPU`` ``CPU`` """ @prim_arg_register def __init__(self, interpolation_mode='bilinear', padding_mode='zeros', align_corners=False): self._set_prim_arg_with_handler("interpolation_mode", interpolation_mode, str_to_enum) self._set_prim_arg_with_handler("padding_mode", padding_mode, str_to_enum) self._set_prim_arg("align_corners", align_corners) def __call__(self, grad, input_x, grid): return super().__call__(grad, input_x, grid, self.interpolation_mode, self.padding_mode, self.align_corners)
[文档]class GridSampler3D(Primitive): r""" Given an input and a grid, the output is calculated using the input values and pixel positions in the grid. Only volume (5-D) input is supported. .. warning:: This is an experimental API that is subject to change or deletion. Refer to :func:`mindspore.ops.grid_sample` for more details. Args: interpolation_mode (str, optional): An optional string specifying the interpolation method. The optional values are ``"bilinear"`` or ``"nearest"`` . Default: ``"bilinear"`` . - ``"nearest"``: Nearest neighbor interpolation. Each output pixel is assigned the value of the nearest input pixel. This method is simple and fast but can result in blocky or pixelated outputs. - ``"bilinear"``: Bilinear interpolation. Each output pixel is a weighted average of the four nearest input pixels, computed using bilinear interpolation. This method produces smoother results compared to nearest neighbor interpolation. padding_mode (str, optional): An optional string specifying the pad method. The optional values are ``"zeros"`` , ``"border"`` or ``"reflection"`` . Default: ``"zeros"`` . When the sampling grid is outside input's bounds, effects of various padding modes are as follows: - ``"zeros"``: Pads the input tensor with zeros. - ``"border"``: Pads the input tensor with the values of the pixels on the border of the tensor. - ``"reflection"``: Pads the input tensor by reflecting the values of the pixels at the boundary of the tensor. align_corners (bool, optional): An optional bool specifying alignment method. If set to ``True`` , the extrema (-1 and 1) are considered as referring to the center points of the input's corner pixels. If set to ``False`` , they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. Default: ``False`` . Inputs: - **input_x** (Tensor) - A 5-D tensor with dtype of float16, float32 or float64 and shape of :math:`(N, C, D_{in}, H_{in}, W_{in})`. - **grid** (Tensor) - A 5-D tensor whose dtype is the same as `input_x` and whose shape is :math:`(N, D_{out}, H_{out}, W_{out}, 3)`. Outputs: A 5-D Tensor whose dtype is the same as `input_x` and whose shape is :math:`(N, C, D_{out}, H_{out}, W_{out})`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor, ops >>> gridsampler = ops.GridSampler3D(interpolation_mode='bilinear', padding_mode='zeros', align_corners=True) >>> input_x = Tensor(np.arange(32).reshape((2, 2, 2, 2, 2)).astype(np.float32)) >>> grid = Tensor(np.arange(-0.2, 1, 0.1).reshape((2, 2, 1, 1, 3)).astype(np.float32)) >>> output = gridsampler(input_x, grid) >>> print(output) [[[[[ 3.3 ]] [[ 4.35 ]]] [[[11.300001]] [[12.349999]]]] [[[[21.4 ]] [[22.449999]]] [[[29.4 ]] [[30.449999]]]]] """ @prim_arg_register def __init__(self, interpolation_mode='bilinear', padding_mode='zeros', align_corners=False): self._set_prim_arg_with_handler("interpolation_mode", interpolation_mode, str_to_enum) self._set_prim_arg_with_handler("padding_mode", padding_mode, str_to_enum) self._set_prim_arg("align_corners", align_corners) def __call__(self, input_x, grid): return super().__call__(input_x, grid, self.interpolation_mode, self.padding_mode, self.align_corners)
class HShrinkGrad(Primitive): r""" Computes gradients for HShrinkGrad operation. Args: Gradients (Tensor) - the gradients of loss to output of HShrink function. Currently gradients data type only support float16 and float32. Features (Tensor) - Must be the input `input_x` of the forward operator HSHrink. Currently features data type only support float16 and float32. lambd (float): the lambda value for the Hardshrink formulation. Default: 0.5 Returns: backprops - Tensor, with the same shape and data type as `features`. Rasise: ValueError: If `lambd` is not a float. ValueError: If shape of `gradients` is not the same as `features`. TypeError: If dtype of `gradients` is not the same as `features`. TypeError: If dtype of `gradients` or `features` is neither float16 nor float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` """ @prim_arg_register def __init__(self, lambd=0.5): self._set_prim_arg("lambd", lambd) def __call__(self, gradients, features): return super().__call__(gradients, features, self.lambd)
[文档]class HShrink(Primitive): r""" Hard Shrink activation function. Refer to :func:`mindspore.ops.hardshrink` for more details. Args: lambd (float, optional): The threshold :math:`\lambda` defined by the Hard Shrink formula. Default: ``0.5`` . Inputs: - **input_x** (Tensor) - The input of Hard Shrink with data type of float16 or float32. Outputs: Tensor, the same shape and data type as the input. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> import mindspore.ops as ops >>> from mindspore import Tensor, nn >>> import numpy as np >>> input_x = Tensor(np.array([[0.5, 1, 2.0], [0.0533, 0.0776, -2.1233]]), ms.float32) >>> hshrink = ops.HShrink() >>> output = hshrink(input_x) >>> print(output) [[ 0. 1. 2. ] [ 0. 0. -2.1233]] """ @prim_arg_register def __init__(self, lambd=0.5): self._set_prim_arg("lambd", lambd) def __call__(self, x): return super().__call__(x, self.lambd)
class HSigmoidGrad(Primitive): r""" Gets the gradient of HSigmoid operation. """ @prim_arg_register def __init__(self): pass def __call__(self, grads, input_x): return super().__call__(grads, input_x) hsigmoid_grad_op=HSigmoidGrad()
[文档]class HSigmoid(Primitive): r""" Hard sigmoid activation function. Refer to :func:`mindspore.ops.hardsigmoid` for more details. Inputs: - **input_x** (Tensor) - The input Tensor. Outputs: Tensor, with the same type and shape as the `input_x`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> hsigmoid = ops.HSigmoid() >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) >>> result = hsigmoid(input_x) >>> print(result) [0.3333 0.1666 0.5 0.8335 0.6665] """ @prim_arg_register def __init__(self): pass def __call__(self, input_x): return super().__call__(input_x)
hsigmoid_op=HSigmoid() class HSwishGrad(Primitive): r""" Gets the gradient of HSwish operation. """ @prim_arg_register def __init__(self): pass def __call__(self, y_grad, x): return super().__call__(y_grad, x) hswish_grad_op=HSwishGrad()
[文档]class HSwish(Primitive): r""" Hard swish activation function. Refer to :func:`mindspore.ops.hardswish` for more details. Inputs: - **input_x** (Tensor) - The input Tensor. Outputs: Tensor, with the same type and shape as the `input_x`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> hswish = ops.HSwish() >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) >>> result = hswish(input_x) >>> print(result) [-0.3333 -0.3333 0 1.666 0.6665] """ @prim_arg_register def __init__(self): pass def __call__(self, x): return super().__call__(x)
hswish_op=HSwish()
[文档]class Identity(Primitive): r""" .. code-block:: prim = ops.Identity() out = prim(input_x) is equivalent to .. code-block:: ops.deepcopy(input_x) Refer to :func:`mindspore.ops.deepcopy` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input_x): return super().__call__(input_x)
identity_op=Identity() class IFFT2(Primitive): r""" .. code-block:: prim = ops.IFFT2() out = prim(input, s, dim, norm) is equivalent to .. code-block:: ops.ifft2(input, s, dim, norm) Refer to :func:`mindspore.ops.ifft2` for more details. """ __mindspore_signature__ = ( sig.make_sig('input'), sig.make_sig('s', default=None), sig.make_sig('dim', default=(-2, -1)), sig.make_sig('norm', default=None), ) @prim_arg_register def __init__(self): pass def __call__(self, input, s=None, dim=(-2, -1), norm=None): return super().__call__(input, s, dim, norm if norm is None else str_to_enum('IFFT2', 'norm', norm)) ifft2_op=IFFT2() class IFFT(Primitive): r""" .. code-block:: prim = ops.IFFT() out = prim(input, n, dim, norm) is equivalent to .. code-block:: ops.ifft(input, n, dim, norm) Refer to :func:`mindspore.ops.ifft` for more details. """ __mindspore_signature__ = ( sig.make_sig('input'), sig.make_sig('n', default=None), sig.make_sig('dim', default=-1), sig.make_sig('norm', default=None), ) @prim_arg_register def __init__(self): pass def __call__(self, input, n=None, dim=-1, norm=None): return super().__call__(input, n, dim, norm if norm is None else str_to_enum('IFFT', 'norm', norm)) ifft_op=IFFT() class IFFTN(Primitive): r""" .. code-block:: prim = ops.IFFTN() out = prim(input, s, dim, norm) is equivalent to .. code-block:: ops.ifftn(input, s, dim, norm) Refer to :func:`mindspore.ops.ifftn` for more details. """ __mindspore_signature__ = ( sig.make_sig('input'), sig.make_sig('s', default=None), sig.make_sig('dim', default=None), sig.make_sig('norm', default=None), ) @prim_arg_register def __init__(self): pass def __call__(self, input, s=None, dim=None, norm=None): return super().__call__(input, s, dim, norm if norm is None else str_to_enum('IFFTN', 'norm', norm)) ifftn_op=IFFTN() class IFFTShift(Primitive): r""" .. code-block:: prim = ops.IFFTShift() out = prim(input, dim) is equivalent to .. code-block:: ops.ifftshift(input, dim) Refer to :func:`mindspore.ops.ifftshift` for more details. """ __mindspore_signature__ = ( sig.make_sig('input'), sig.make_sig('dim', default=None), ) @prim_arg_register def __init__(self): pass def __call__(self, input, dim=None): return super().__call__(input, dim) ifftshift_op=IFFTShift() class IRFFTGrad(Primitive): r""" """ __mindspore_signature__ = ( sig.make_sig('input1'), sig.make_sig('input2'), sig.make_sig('n', default=None), sig.make_sig('dim', default=-1), sig.make_sig('norm', default=None), ) @prim_arg_register def __init__(self): pass def __call__(self, input1, input2, n=None, dim=-1, norm=None): return super().__call__(input1, input2, n, dim, norm if norm is None else str_to_enum('IRFFTGrad', 'norm', norm)) irfft_grad_op=IRFFTGrad() class IRFFT(Primitive): r""" .. code-block:: prim = ops.IRFFT() out = prim(input, n, dim, norm) is equivalent to .. code-block:: ops.irfft(input, n, dim, norm) Refer to :func:`mindspore.ops.irfft` for more details. """ __mindspore_signature__ = ( sig.make_sig('input'), sig.make_sig('n', default=None), sig.make_sig('dim', default=-1), sig.make_sig('norm', default=None), ) @prim_arg_register def __init__(self): pass def __call__(self, input, n=None, dim=-1, norm=None): return super().__call__(input, n, dim, norm if norm is None else str_to_enum('IRFFT', 'norm', norm)) irfft_op=IRFFT() class IsFinite(Primitive): r""" .. code-block:: prim = ops.IsFinite() out = prim(x) is equivalent to .. code-block:: ops.is_finite(x) Refer to :func:`mindspore.ops.is_finite` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, x): return super().__call__(x) is_finite_op=IsFinite() class LayerNormGradGrad(Primitive): r""" Gets the gradient of LayerNormGrad operation. Inputs: - **x** (Tensor) - The input tensor to be normalized, float32 or float16. - **dy** (Tensor) - The gradient of LayerNorm's output y, float32 or float16. - **variance** (Tensor) - The variance of x, float32 or float16. - **mean** (Tensor) - The mean of x, float32 or float16. - **gamma** (Tensor) - The original value of weight gamma initialized in LayerNorm, float32 or float16. Default: 'ones'. - **d_dx** (Tensor) - The gradient of dx, where dx is the gradient of LayerNorm's input x, float32 or float16. - **d_dg** (Tensor) - The gradient of dg, where dg is the gradient of LayerNorm's weight gamma, float32 or float16. - **d_db** (Tensor) - The gradient of db, where db is the gradient of LayerNorm's weight beta, float32 or float16. - **begin_norm_axis** (int) - The begin axis for the input to apply layernorm. Default: 1. - **begin_params_axis** (int) - The begin axis for the parameter input to apply layernorm. Default: 1. Outputs: Tuple[Tensor], tuple of 3 Tensors (the gradients of layernormgrad x, dy, gamma). Raises: TypeError: If the 8 inputs don't have the same dtype. ValueError: If x, dy, d_dx don't have the same shape. ValueError: If variance, mean don't have the same shape. ValueError: If gamma, d_dg, d_db don't have the same shape. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` """ @prim_arg_register def __init__(self, begin_norm_axis=1, begin_params_axis=1): self._set_prim_arg("begin_norm_axis", begin_norm_axis) self._set_prim_arg("begin_params_axis", begin_params_axis) def __call__(self, x, dy, variance, mean, gamma, d_dx, d_dg, d_db): return super().__call__(x, dy, variance, mean, gamma, d_dx, d_dg, d_db, self.begin_norm_axis, self.begin_params_axis) class LayerNormGrad(Primitive): r""" Applies the layer Normalization to the input array. This operator will calculate the input gradients of layernorm. Inputs: x (Tensor): The inputs of layer norm op. dy (Tensor): The gradient of outputs of layer norm op. variance (Tensor): The variance of x. mean (Tensor): The mean of x. gamma (Tensor): The weights of normalized elements. begin_norm_axis (int): The begin axis for the input to apply layernorm. Default: 1. begin_params_axis (int): The begin axis for the parameter input to apply layernorm. Default: 1. Outputs: tuple[int], tuple of 3 values (the gradients of layernorm input, gamma, beta). pd_x (Tensor): the gradients of layernorm input x. pd_gamma (Tensor): the gradients of gamma. pd_beta (Tensor): the gradients of beta. """ @prim_arg_register def __init__(self, begin_norm_axis=1, begin_params_axis=1): self._set_prim_arg("begin_norm_axis", begin_norm_axis) self._set_prim_arg("begin_params_axis", begin_params_axis) def __call__(self, x, dy, variance, mean, gamma): return super().__call__(x, dy, variance, mean, gamma, self.begin_norm_axis, self.begin_params_axis) class LayerNormGradV3(Primitive): r""" Applies the layer Normalization to the input array. This operator will calculate the input gradients of LayerNormV3. Inputs: x (Tensor): The inputs of layer norm operator. dy (Tensor): The gradient of outputs of layer norm operator. rstd (Tensor): The rstd of x. mean (Tensor): The mean of x. gamma (Tensor): The weights of normalized elements. begin_norm_axis (int): The begin axis for the input to apply LayerNormV3. Default: 1. begin_params_axis (int): The begin axis for the parameter input to apply LayerNormV3. Default: 1. Outputs: tuple[int], tuple of 3 values (the gradients of LayerNormV3 input, gamma, beta). pd_x (Tensor): the gradients of LayerNormV3 input x. pd_gamma (Tensor): the gradients of gamma. pd_beta (Tensor): the gradients of beta. """ @prim_arg_register def __init__(self, begin_norm_axis=1, begin_params_axis=1): self._set_prim_arg("begin_norm_axis", begin_norm_axis) self._set_prim_arg("begin_params_axis", begin_params_axis) def __call__(self, x, dy, variance, mean, gamma): return super().__call__(x, dy, variance, mean, gamma, self.begin_norm_axis, self.begin_params_axis)
[文档]class LayerNorm(Primitive): r""" Applies the Layer Normalization to the input tensor. This operator will normalize the input tensor on given axis. LayerNorm is described in the paper `Layer Normalization <https://arxiv.org/abs/1607.06450>`_. .. math:: y = \frac{x - mean}{\sqrt{variance + \epsilon}} * \gamma + \beta where :math:`\gamma` is scale, :math:`\beta` is bias, :math:`\epsilon` is epsilon. Args: begin_norm_axis (int): The begin axis of the `input_x` to apply LayerNorm, the value must be in [-1, rank(input_x)). Default: ``1`` . begin_params_axis (int): The begin axis of the parameter input (`gamma`, `beta`) to apply LayerNorm, the value must be in [-1, rank(input_x)). Default: ``1`` . epsilon (float): A value added to the denominator for numerical stability(:math:`\epsilon`). Default: ``1e-7`` . Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(N, \ldots)`. The input of LayerNorm. Supported dtypes: float16, float32, float64. - **gamma** (Tensor) - Learnable parameter :math:`\gamma` . Tensor of shape `input_x_shape[begin_params_axis:]`. Supported dtypes: float16, float32, float64. - **beta** (Tensor) - Learnable parameter :math:`\beta` . Tensor of shape `input_x_shape[begin_params_axis:]`. Supported dtypes: float16, float32, float64. Outputs: tuple[Tensor], tuple of 3 tensors, the normalized input and the updated parameters. - **output_x** (Tensor) - The normalized input, has the same type and shape as the `input_x`. - **mean** (Tensor) - The first `begin_norm_axis` dimensions of `mean` shape is the same as `input_x`, and the remaining dimensions are 1. Suppose the shape of the `input_x` is :math:`(x_1, x_2, \ldots, x_R)`, the shape of the `mean` is :math:`(x_1, \ldots, x_{begin\_norm\_axis}, 1, \ldots, 1)` (when `begin_norm_axis=0`, the shape of `mean` is :math:`(1, \ldots, 1)` ). - **rstd** (Tensor) - The reciprocal of the input standard deviation. Shape is the same as `mean` . Raises: TypeError: If `begin_norm_axis` or `begin_params_axis` is not an int. TypeError: If `epsilon` is not a float. TypeError: If `input_x`, `gamma` or `beta` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_x = Tensor(np.array([[1, 2, 3], [1, 2, 3]]), mindspore.float32) >>> gamma = Tensor(np.ones([3]), mindspore.float32) >>> beta = Tensor(np.ones([3]), mindspore.float32) >>> layer_norm = ops.LayerNorm() >>> output, _, _ = layer_norm(input_x, gamma, beta) >>> print(output) [[-0.2247448 1. 2.2247448] [-0.2247448 1. 2.2247448]] """ @prim_arg_register def __init__(self, begin_norm_axis=1, begin_params_axis=1, epsilon=1e-7): self._set_prim_arg("begin_norm_axis", begin_norm_axis) self._set_prim_arg("begin_params_axis", begin_params_axis) self._set_prim_arg("epsilon", epsilon) def __call__(self, input_x, gamma, beta): return super().__call__(input_x, gamma, beta, self.begin_norm_axis, self.begin_params_axis, self.epsilon)
class LayerNormV3(Primitive): r""" Applies the Layer Normalization to the input tensor. This operator will normalize the input tensor on given axis. LayerNormV3 is described in the paper `Layer Normalization <https://arxiv.org/abs/1607.06450>`_. .. math:: y = \frac{x - mean}{\sqrt{variance + \epsilon}} * \gamma + \beta where :math:`\gamma` is scale, :math:`\beta` is bias, :math:`\epsilon` is epsilon. Args: begin_norm_axis (int): The begin axis of the `input_x` to apply LayerNormV3, the value must be in [-1, rank(input_x)). Default: ``1`` . begin_params_axis (int): The begin axis of the parameter input (`gamma`, `beta`) to apply LayerNormV3, the value must be in [-1, rank(input_x)). Default: ``1`` . epsilon (float): A value added to the denominator for numerical stability(:math:`\epsilon`). Default: ``1e-7`` . Inputs: - **input_x** (Tensor) - Tensor with shape :math:`(N, \ldots)`. The input of LayerNormV3. Supported dtypes: float16, float32, bfloat16. - **gamma** (Tensor) - Tensor with shape `input_x_shape[begin_params_axis:]`. - **beta** (Tensor) - Tensor with shape `input_x_shape[begin_params_axis:]`. Outputs: tuple[Tensor], tuple of 3 tensors, the normalized input and the updated parameters. - **output_x** (Tensor) - The normalized input, has the same type and shape as the `input_x`. - **mean** (Tensor) - The first `begin_norm_axis` dimensions of `mean` shape is the same as `input_x`, and the remaining dimensions are 1. Suppose the shape of the `input_x` is :math:`(x_1, x_2, \ldots, x_R)`, the shape of the `mean` is :math:`(x_1, \ldots, x_{begin_params_axis}, 1, \ldots, 1)` (when `begin_params_axis=0`, the shape of `mean` is :math:`(1, \ldots, 1)` ). - **rstd** (Tensor) - Shape is the same as `mean` . Raises: TypeError: If `begin_norm_axis` or `begin_params_axis` is not an int. TypeError: If `epsilon` is not a float. TypeError: If `input_x`, `gamma` or `beta` is not a Tensor. Supported Platforms: ``Ascend`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_x = Tensor(np.array([[1, 2, 3], [1, 2, 3]]), mindspore.float32) >>> gamma = Tensor(np.ones([3]), mindspore.float32) >>> beta = Tensor(np.ones([3]), mindspore.float32) >>> layer_norm = ops.LayerNormV3() >>> output, mean, variance = layer_norm(input_x, gamma, beta) >>> print(output) [[-0.22474468 1. 2.22474468] [-0.22474468 1. 2.22474468]] >>> print(mean) [[2.] [2.]] >>> print(variance) [[1.2247447] [.2247447]] """ @prim_arg_register def __init__(self, begin_norm_axis=1, begin_params_axis=1, epsilon=1e-7): self._set_prim_arg("begin_norm_axis", begin_norm_axis) self._set_prim_arg("begin_params_axis", begin_params_axis) self._set_prim_arg("epsilon", epsilon) def __call__(self, input_x, gamma, beta): return super().__call__(input_x, gamma, beta, self.begin_norm_axis, self.begin_params_axis, self.epsilon)
[文档]class LessEqual(Primitive): r""" .. code-block:: prim = ops.LessEqual() out = prim(input, other) is equivalent to .. code-block:: ops.less_equal(input, other) Refer to :func:`mindspore.ops.less_equal` for more details. """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, input, other): return _convert_stub(pyboost_less_equal(self, [input, other]))
less_equal_op=LessEqual()
[文档]class Less(Primitive): r""" .. code-block:: prim = ops.Less() out = prim(input, other) is equivalent to .. code-block:: ops.less(input, other) Refer to :func:`mindspore.ops.less` for more details. """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, input, other): return super().__call__(input, other)
less_op=Less()
[文档]class LinSpace(Primitive): r""" Returns a Tensor whose value is `num` evenly spaced in the interval `start` and `stop` (including `start` and `stop`), and the length of the output Tensor is `num`. Refer to :func:`mindspore.ops.linspace` for more details. Inputs: - **start** (Tensor) - Start value of interval, 0-D Tensor with dtype float32 or float64. - **stop** (Tensor) - Last value of interval, 0-D Tensor with dtype float32 or float64. - **num** (Union[int, Tensor]) - Number of ticks in the interval, inclusive of `start` and `stop`. Must be a positive integer. When the input is Tensor, it must be a 0-D Tensor with dtype int32 or int64. Outputs: Tensor, has the same shape and dtype as `start`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> from mindspore import Tensor, ops >>> start = Tensor(1, mindspore.float32) >>> stop = Tensor(10, mindspore.float32) >>> num = 5 >>> output = ops.LinSpace()(start, stop, num) >>> print(output) [ 1. 3.25 5.5 7.75 10. ] """ @prim_arg_register def __init__(self): pass def __call__(self, start, stop, num): return super().__call__(start, stop, num)
lin_space_op=LinSpace()
[文档]class Log1p(Primitive): r""" .. code-block:: prim = ops.Log1p() out = prim(input) is equivalent to .. code-block:: ops.log1p(input) Refer to :func:`mindspore.ops.log1p` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
log1p_op=Log1p() class LogMatrixDeterminant(Primitive): r""" Computes the sign and the log of the absolute value of the determinant of one or more square matrices. Note: The type of output always be real-value, even `input` is complex. Args: input (Tensor): A matrix to be calculated, its shape is :math:`(..., M, M)`. The matrix must be at least two dimensions, and the last two dimensions must be the same size. Data type must be float32, float64, complex64 or complex128. Returns: Tensor. The signs of the log determinants. The shape is :math:`input.shape[:-2]`. Tensor. The absolute values of the log determinants. The shape is :math:`input.shape[:-2]`. Raises: TypeError: If `input` is not a Tensor. TypeError: If dtype of `input` not float32, float64, complex64 or complex128. ValueError: If the last two dimensions of `input` is not same size. ValueError: If the dimension of `input` is less than 2. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_x = Tensor(np.array([[[-4.5, -1.5], [7.0, 6.0]], [[2.5, 0.5], [3.0, 9.0]]]), mindspore.float32) >>> sign, output = ops.LogMatrixDeterminant()(input_x) >>> print(sign) [-1. 1.] >>> print(output) [2.80336046e+00 3.04452229e+00] """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input) log_matrix_determinant_op=LogMatrixDeterminant()
[文档]class Log(Primitive): r""" .. code-block:: prim = ops.Log() out = prim(input) is equivalent to .. code-block:: ops.log(input) Refer to :func:`mindspore.ops.log` for more details. """ @prim_arg_register def __init__(self): self.add_prim_attr("cust_aicpu", 'Log') self.add_prim_attr("base", -1.0) self.add_prim_attr("scale", 1.0) self.add_prim_attr("shift", 0.0) def __call__(self, input): return _convert_stub(pyboost_log(self, [input]))
log_op=Log() class LogSoftmaxGrad(Primitive): r""" Computes gradient for the Log Softmax activation. """ @prim_arg_register def __init__(self, axis=-1): self._set_prim_arg("axis", axis) def __call__(self, logits, grad): return super().__call__(logits, grad, self.axis)
[文档]class LogSoftmax(Primitive): r""" .. code-block:: prim = ops.LogSoftmax(axis) out = prim(logits) is equivalent to .. code-block:: ops.log_softmax(logits, axis) Refer to :func:`mindspore.ops.log_softmax` for more details. """ @prim_arg_register def __init__(self, axis=-1): self._set_prim_arg("axis", axis) def __call__(self, logits): return super().__call__(logits, self.axis)
[文档]class LogicalAnd(Primitive): r""" Computes the "logical AND" of two tensors element-wise. Refer to :func:`mindspore.ops.logical_and` for more details. Inputs: - **x** (Union[Tensor, bool]) - The first input is a bool or a tensor whose data type can be implicitly converted to bool. - **y** (Union[Tensor, bool]) - The second input is a bool when the first input is a tensor or a tensor whose data type can be implicitly converted to bool. Outputs: Tensor, the shape is the same as the `x` and `y` after broadcasting, and the data type is bool. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([True, False, True]), mindspore.bool_) >>> y = Tensor(np.array([True, True, False]), mindspore.bool_) >>> logical_and = ops.LogicalAnd() >>> output = logical_and(x, y) >>> print(output) [ True False False] >>> x = Tensor(1, mindspore.bool_) >>> y = Tensor(0, mindspore.bool_) >>> output = ops.LogicalAnd()(x, y) >>> print(output) False >>> x = True >>> y = Tensor(0, mindspore.bool_) >>> output = ops.LogicalAnd()(x, y) >>> print(output) False >>> x = True >>> y = Tensor(np.array([True, False]), mindspore.bool_) >>> output = ops.LogicalAnd()(x, y) >>> print(output) [True False] """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, x, y): return _convert_stub(pyboost_logical_and(self, [x, y]))
logical_and_op=LogicalAnd()
[文档]class LogicalNot(Primitive): r""" Computes the "logical NOT" of a tensor element-wise. Refer to :func:`mindspore.ops.logical_not` for more details. Inputs: - **x** (Tensor) - The input tensor. Outputs: Tensor, the shape is the same as the `x`, and the dtype is bool. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([True, False, True]), mindspore.bool_) >>> logical_not = ops.LogicalNot() >>> output = logical_not(x) >>> print(output) [False True False] """ @prim_arg_register def __init__(self): pass def __call__(self, input): return _convert_stub(pyboost_logical_not(self, [input]))
logical_not_op=LogicalNot()
[文档]class LogicalOr(Primitive): r""" Computes the "logical OR" of two tensors element-wise. Refer to :func:`mindspore.ops.logical_or` for more details. Inputs: - **x** (Union[Tensor, bool]) - The first input is a bool or a tensor whose data type can be implicitly converted to bool. - **y** (Union[Tensor, bool]) - The second input is a bool when the first input is a tensor or a tensor whose data type can be implicitly converted to bool. Outputs: Tensor, the shape is the same as the `x` and `y` after broadcasting, and the data type is bool. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([True, False, True]), mindspore.bool_) >>> y = Tensor(np.array([True, True, False]), mindspore.bool_) >>> logical_or = ops.LogicalOr() >>> output = logical_or(x, y) >>> print(output) [ True True True] >>> x = Tensor(1, mindspore.bool_) >>> y = Tensor(0, mindspore.bool_) >>> output = ops.LogicalOr()(x, y) >>> print(output) True >>> x = True >>> y = Tensor(0, mindspore.bool_) >>> output = ops.LogicalOr()(x, y) >>> print(output) True >>> x = True >>> y = Tensor(np.array([True, False]), mindspore.bool_) >>> output = ops.LogicalOr()(x, y) >>> print(output) [True True] """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, x, y): return _convert_stub(pyboost_logical_or(self, [x, y]))
logical_or_op=LogicalOr()
[文档]class LogicalXor(Primitive): r""" Computes the "logical XOR" of two tensors element-wise. .. warning:: This is an experimental API that is subject to change or deletion. Refer to :func:`mindspore.ops.logical_xor` for more details. Inputs: - **x** (Union[Tensor, bool]) - The first input is a bool or a tensor whose data type can be implicitly converted to bool. - **y** (Union[Tensor, bool]) - The second input is a bool when the first input is a tensor or a tensor whose data type can be implicitly converted to bool. Outputs: Tensor, the shape is the same as the `x` and `y` after broadcasting, and the data type is bool. Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([True, False, True]), mindspore.bool_) >>> y = Tensor(np.array([True, True, False]), mindspore.bool_) >>> logical_xor = ops.LogicalXor() >>> output = logical_xor(x, y) >>> print(output) [ False True True] >>> x = Tensor(1, mindspore.bool_) >>> y = Tensor(0, mindspore.bool_) >>> output = ops.LogicalXor()(x, y) >>> print(output) True >>> x = True >>> y = Tensor(0, mindspore.bool_) >>> output = ops.LogicalXor()(x, y) >>> print(output) True >>> x = True >>> y = Tensor(np.array([True, False]), mindspore.bool_) >>> output = ops.LogicalXor()(x, y) >>> print(output) [False True] """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, input, other): return super().__call__(input, other)
logical_xor_op=LogicalXor() class LogitGrad(Primitive): r""" Computes LogitGrad of input element-wise. Returns: Tensor, has the same type as input. """ @prim_arg_register def __init__(self, eps=-1.0): self._set_prim_arg("eps", eps) def __call__(self, grad, input): return super().__call__(grad, input, self.eps)
[文档]class Logit(Primitive): r""" Calculate the logit of a tensor element-wise. Element in `x` is clamped to [eps, 1-eps]. .. warning:: This is an experimental API that is subject to change or deletion. Refer to :func:`mindspore.ops.logit` for more details. Args: eps (float, optional): The epsilon. The input clamp bound is defined as [eps, 1-eps]. Default: ``-1.0`` . Inputs: - **x** (Tensor) - The input tensor of type float16, float32 or float64. Outputs: Tensor, with the same shape and dtype as the `x`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([0.1, 0.2, 0.3]).astype(np.float32)) >>> op = ops.Logit(eps=1e-5) >>> output = op(x) >>> print(output) [-2.1972246 -1.3862944 -0.8472978] """ @prim_arg_register def __init__(self, eps=-1.0): self._set_prim_arg("eps", eps) def __call__(self, input): return super().__call__(input, self.eps)
[文档]class MaskedFill(Primitive): r""" .. code-block:: prim = ops.MaskedFill() out = prim(input_x, mask, value) is equivalent to .. code-block:: ops.masked_fill(input_x, mask, value) Refer to :func:`mindspore.ops.masked_fill` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input_x, mask, value): return _convert_stub(pyboost_masked_fill(self, [input_x, mask, value]))
masked_fill_op=MaskedFill() class MatrixDeterminant(Primitive): r""" Calculates the value of the determinant for one or more square matrices. Refer to :func:`mindspore.ops.det` for more details. Inputs: - **x** (Tensor) - A matrix to be calculated. The matrix must be at least two dimensions, and the last two dimensions must be the same size. Outputs: Tensor, the shape is `x_shape[:-2]`, the dtype is same as `x`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([[[-4.5, -1.5], [7.0, 6.0]], [[2.5, 0.5], [3.0, 9.0]]]), mindspore.float32) >>> op = ops.MatrixDeterminant() >>> output = op(input_x) >>> print(output) [-16.5 21. ] """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input) matrix_determinant_op=MatrixDeterminant() class MatrixExp(Primitive): r""" .. code-block:: prim = ops.MatrixExp() out = prim(input) is equivalent to .. code-block:: ops.matrix_exp(input) Refer to :func:`mindspore.ops.matrix_exp` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input) matrix_exp_op=MatrixExp() class MaximumGradGrad(Primitive): r""" Grad for maximum grad. """ @prim_arg_register def __init__(self, grad_x=True, grad_y=True): self._set_prim_arg("grad_x", grad_x) self._set_prim_arg("grad_y", grad_y) def __call__(self, x, y, dx, dy): return super().__call__(x, y, dx, dy, self.grad_x, self.grad_y) class MaximumGrad(Primitive): r""" Grad for maximum. """ @prim_arg_register def __init__(self, grad_x=True, grad_y=True): self._set_prim_arg("grad_x", grad_x) self._set_prim_arg("grad_y", grad_y) def __call__(self, x, y, grads): return super().__call__(x, y, grads, self.grad_x, self.grad_y)
[文档]class Maximum(Primitive): r""" .. code-block:: prim = ops.Maximum() out = prim(input, other) is equivalent to .. code-block:: ops.maximum(input, other) Refer to :func:`mindspore.ops.maximum` for more details. """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, input, other): return super().__call__(input, other)
maximum_op=Maximum() class MinimumGrad(Primitive): r""" Grad for minimum. """ @prim_arg_register def __init__(self, grad_x=True, grad_y=True): self._set_prim_arg("grad_x", grad_x) self._set_prim_arg("grad_y", grad_y) def __call__(self, x1, x2, grads): return super().__call__(x1, x2, grads, self.grad_x, self.grad_y)
[文档]class Minimum(Primitive): r""" .. code-block:: prim = ops.Minimum() out = prim(input, other) is equivalent to .. code-block:: ops.minimum(input, other) Refer to :func:`mindspore.ops.minimum` for more details. """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, input, other): return super().__call__(input, other)
minimum_op=Minimum()
[文档]class Mul(Primitive): r""" .. code-block:: prim = ops.Mul() out = prim(input, other) is equivalent to .. code-block:: ops.mul(input, other) Refer to :func:`mindspore.ops.mul` for more details. """ __mindspore_signature__ = ( sig.make_sig('input', sig.sig_rw.RW_READ, dtype=sig.sig_dtype.T), sig.make_sig('other', sig.sig_rw.RW_READ, dtype=sig.sig_dtype.T), ) @prim_arg_register def __init__(self): pass def __call__(self, input, other): return _convert_stub(pyboost_mul(self, [input, other]))
mul_op=Mul()
[文档]class NanToNum(Primitive): r""" Replaces `NaN`, positive infinity and negative infinity values in the input Tensor with the values specified by `nan`, `posinf` and `neginf` respectively. .. warning:: This is an experimental API that is subject to change or deletion. Refer to :func:`mindspore.ops.nan_to_num` for more details. Args: nan (float, optional): The value to replace `NaN`. Default value is ``None`` . posinf (float, optional): If a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by `x`'s dtype. Default value is ``None`` . neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by `x`'s dtype. Default value is ``None`` . Inputs: - **x** (Tensor) - Input Tensor of any dimensions. Supported data types: float32 or float16. Outputs: Tensor, has the same shape and dtype as the `x`. Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> nan_to_num = ops.NanToNum() >>> x = Tensor(np.array([float('nan'), float('inf'), -float('inf'), 3.14]), mindspore.float32) >>> output = nan_to_num(x) >>> print(output) [ 0.0000000e+00 3.4028235e+38 -3.4028235e+38 3.1400001e+00] """ @prim_arg_register def __init__(self, nan=None, posinf=None, neginf=None): self._set_prim_arg("nan", nan) self._set_prim_arg("posinf", posinf) self._set_prim_arg("neginf", neginf) def __call__(self, x): return super().__call__(x, self.nan, self.posinf, self.neginf)
[文档]class Neg(Primitive): r""" .. code-block:: prim = ops.Neg() out = prim(input) is equivalent to .. code-block:: ops.neg(input) Refer to :func:`mindspore.ops.neg` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return _convert_stub(pyboost_neg(self, [input]))
neg_op=Neg()
[文档]class NextAfter(Primitive): r""" .. code-block:: prim = ops.NextAfter() out = prim(input, other) is equivalent to .. code-block:: ops.nextafter(input, other) Refer to :func:`mindspore.ops.nextafter` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input, other): return super().__call__(input, other)
next_after_op=NextAfter() class NLLLossGrad(Primitive): r""" Computes the gradients of `NLLLoss`. """ @prim_arg_register def __init__(self, reduction='mean', ignore_index=-100): self._set_prim_arg_with_handler("reduction", reduction, str_to_enum) self._set_prim_arg("ignore_index", ignore_index) def __call__(self, logits, loss_grad, labels, weight, total_weight): return super().__call__(logits, loss_grad, labels, weight, total_weight, self.reduction, self.ignore_index)
[文档]class NLLLoss(Primitive): r""" Gets the negative log likelihood loss between logits and labels. The nll loss with :math:`reduction = none` can be described as: .. math:: \ell(x, t)=L=\left\{l_{1}, \ldots, l_{N}\right\}^{\top}, \quad l_{n}=-w_{t_{n}} x_{n, t_{n}}, \quad w_{c}=\text { weight }[c] \cdot 1 where :math:`x` is the logits, :math:`t` is the labels, :math:`w` is the weight, N is the batch size, :math:`c` belonging to [0, C-1] is class index, where :math:`C` is the number of classes. If :math:`reduction \neq none` (default ``'mean'`` ), then .. math:: \ell(x, t)=\left\{\begin{array}{ll} \sum_{n=1}^{N} \frac{1}{\sum_{n=1}^{N} w_{t n}} l_{n}, & \text { if reduction }=\text { 'mean'; } \\ \sum_{n=1}^{N} l_{n}, & \text { if reduction }=\text { 'sum' } \end{array}\right. Args: reduction (str, optional): Apply specific reduction method to the output: ``'none'`` , ``'mean'`` , ``'sum'`` . Default: ``'mean'`` . - ``'none'``: no reduction will be applied. - ``'mean'``: compute and return the weighted mean of elements in the output. - ``'sum'``: the output elements will be summed. ignore_index (int): Specifies a target value that is ignored and does not contribute to the input gradient. Default: ``-100`` . Inputs: - **logits** (Tensor) - Input logits, with shape :math:`(N, C)`. Data type only supports float32 or float16. - **labels** (Tensor) - Ground truth labels, with shape :math:`(N,)`, where each value belong to :math:`[0, C-1]`. Data type only supports int32 or int64. - **weight** (Tensor) - The rescaling weight to each class, with shape :math:`(C,)` and data type only supports float32 or float16. Outputs: Tuple of 2 tensors composed with `loss` and `total_weight`. - **loss** (Tensor) - When `reduction` is ``'none'`` and `logits` is a 2D tensor, the `loss` shape is :math:`(N,)`. Otherwise, the `loss` is a scalar. The data type is the same with `input's`. - **total_weight** (Tensor) - The `total_weight` is a scalar. The data type is the same with `weight's`. Raises: TypeError: If dtype of `logits` or `weight` is neither float16 nor float32. TypeError: If dtype of `labels` is neither int32 nor int64. ValueError: If `logits` is not a one or two dimension tensor, `labels` and `weight` are not one dimension tensors. When `logits` is a two dimension tensor, the first dimension of `logits` is not equal to `labels`, and second dimension of `logits` is not equal to `weight`. When `logits` is a one dimension tensor, the dimensions of `logits`, `labels` and `weight` should be equal to each other. ValueError: If the value of `labels` exceed :math:`[0, C-1]`, where :math:`C` is the number of classes. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor, ops >>> logits = Tensor(np.array([[0.5488135, 0.71518934], ... [0.60276335, 0.5448832], ... [0.4236548, 0.6458941]]).astype(np.float32)) >>> labels = Tensor(np.array([0, 0, 0]).astype(np.int32)) >>> weight = Tensor(np.array([0.3834415, 0.79172504]).astype(np.float32)) >>> nll_loss = ops.NLLLoss(reduction="mean") >>> loss, weight = nll_loss(logits, labels, weight) >>> print(loss) -0.52507716 >>> print(weight) 1.1503246 """ @prim_arg_register def __init__(self, reduction='mean', ignore_index=-100): self._set_prim_arg_with_handler("reduction", reduction, str_to_enum) self._set_prim_arg("ignore_index", ignore_index) def __call__(self, logits, labels, weight): return super().__call__(logits, labels, weight, self.reduction, self.ignore_index)
[文档]class NonZero(Primitive): r""" .. code-block:: prim = ops.NonZero() out = prim(input) is equivalent to .. code-block:: ops.nonzero(input) Refer to :func:`mindspore.ops.nonzero` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
non_zero_op=NonZero()
[文档]class NotEqual(Primitive): r""" .. code-block:: prim = ops.NotEqual() out = prim(input, other) is equivalent to .. code-block:: ops.not_equal(input, other) Refer to :func:`mindspore.ops.not_equal` for more details. """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, input, other): return _convert_stub(pyboost_not_equal(self, [input, other]))
not_equal_op=NotEqual() class NPUClearFloatStatusV2(Primitive): r""" Compare to NPUClearStatus Clear the flag for storage overflow status. This flag is located in a register at a fixed address on the `Ascend` device, and overflow information is automatically written to this register. The flag is a one-dimensional Tensor with shape :math:`(8,)` and data type `mindspore.dtype.int32`. If the value of flag is zero, no overflow has occurred, otherwise, overflow. When performing overflow detection on the network, you should first call `NPUClearFloatStatusV2` to reset the register before the detection, and then call `NPUGetFloatStatusV2` to get the register status after the network execution is completed. Note: - In order to avoid mis-optimization by the compiler, additional input and output are added to this operator. The input and output are defined as a shape of: math:`(8,)` and data type of `mindspore.dtype.int32` Tensor, meaningless. - Since this op lacks contextual dependencies with parameters in the network, :class:`mindspore.ops.Depend` needs to be used to ensure order of execution. Inputs: - **input** Tensor, an additional input created to avoid compiler optimization, is specified as shape :math:`(8,)`, data type is `mindspore.dtype.int32`, and has no actual meaning.. Outputs: - **output** Tensor, shape and data type are the same as input, meaningless. Supported Platforms: ``Ascend`` Examples: >>> import mindspore as ms >>> import numpy as np >>> from mindspore import ops, nn, Tensor >>> from mindspore.ops import NPUGetFloatStatusV2, NPUClearFloatStatusV2 >>> class Net(nn.Cell): ... def __init__(self): ... super().__init__() ... self.clear_status = NPUClearFloatStatusV2() ... self.get_status = NPUGetFloatStatusV2() ... self.sub = ops.Sub() ... self.neg = ops.Neg() ... self.equal = ops.Equal() ... self.reduce_all = ops.ReduceAll(keep_dims=False) ... self.base = Tensor([0], dtype=ms.int32) ... self.logic_not = ops.LogicalNot() ... ... def construct(self, x): ... init = Tensor([0]*8, dtype=ms.int32) ... clear_status = self.clear_status(init) ... x = ops.depend(x, clear_status) ... res = self.sub(x, self.neg(x)) ... init = ops.depend(init, res) ... get_status = self.get_status(init) ... flag = self.equal(self.base, get_status) ... overall_finite = self.reduce_all(flag) ... overflow = self.logic_not(overall_finite) ... return overflow ... >>> value = 65504 >>> data = np.full((2, 3), value, dtype=np.float16) >>> x = Tensor(data, dtype=ms.float16) >>> net = Net() >>> res = net(x) >>> print(res) True >>> value = 10 >>> data = np.full((2, 3), value, dtype=np.float16) >>> x = Tensor(data, dtype=ms.float16) >>> net = Net() >>> res = net(x) >>> print(res) False """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input) npu_clear_float_status_v2_op=NPUClearFloatStatusV2() class NPUGetFloatStatusV2(Primitive): r""" Get the flag for storage overflow status. This flag is located in a register at a fixed address on the `Ascend` device, and overflow information is automatically written to this register. The flag is a one-dimensional Tensor with shape :math:`(8,)` and data type `mindspore.dtype.int32`. If the value of flag is zero, no overflow has occurred, otherwise, overflow. When performing overflow detection on the network, you should first call `NPUClearFloatStatusV2` to reset the register before the detection, and then call `NPUGetFloatStatusV2` to get the register status after the network execution is completed. Note: - In order to avoid mis-optimization by the compiler, additional input is added to this operator. The input is defined as a shape of: math:`(8,)` and data type of `mindspore.dtype.int32` Tensor, meaningless. - Since this op lacks contextual dependencies with parameters in the network, :class:`mindspore.ops.Depend` needs to be used to ensure order of execution. Inputs: - **input** Tensor, an additional input created to avoid compiler optimization, is specified as shape :math:`(8,)`, data type is `mindspore.dtype.int32`, and has no actual meaning. Usually use the output of `NPUClearFloatStatusV2`. Outputs: - **output** Tensor, shape and data type are the same as input. If all are zero, it means no overflow, otherwise, overflow. Supported Platforms: ``Ascend`` Examples: >>> import mindspore as ms >>> import numpy as np >>> from mindspore import ops, nn, Tensor >>> from mindspore.ops import NPUGetFloatStatusV2, NPUClearFloatStatusV2 >>> class Net(nn.Cell): ... def __init__(self): ... super().__init__() ... self.clear_status = NPUClearFloatStatusV2() ... self.get_status = NPUGetFloatStatusV2() ... self.sub = ops.Sub() ... self.neg = ops.Neg() ... self.equal = ops.Equal() ... self.reduce_all = ops.ReduceAll(keep_dims=False) ... self.base = Tensor([0], dtype=ms.int32) ... self.logic_not = ops.LogicalNot() ... ... def construct(self, x): ... init = Tensor([0]*8, dtype=ms.int32) ... clear_status = self.clear_status(init) ... x = ops.depend(x, clear_status) ... res = self.sub(x, self.neg(x)) ... init = ops.depend(init, res) ... get_status = self.get_status(init) ... flag = self.equal(self.base, get_status) ... overall_finite = self.reduce_all(flag) ... overflow = self.logic_not(overall_finite) ... return overflow ... >>> value = 65504 >>> data = np.full((2, 3), value, dtype=np.float16) >>> x = Tensor(data, dtype=ms.float16) >>> net = Net() >>> res = net(x) >>> print(res) True >>> value = 10 >>> data = np.full((2, 3), value, dtype=np.float16) >>> x = Tensor(data, dtype=ms.float16) >>> net = Net() >>> res = net(x) >>> print(res) False """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input) npu_get_float_status_v2_op=NPUGetFloatStatusV2()
[文档]class OneHot(Primitive): r""" Computes a one-hot tensor. The locations represented by indices in `indices` take value `on_value`, while all other locations take value `off_value`. Note: If the input indices is rank `N`, the output will have rank `N+1`. The new axis is created at dimension `axis`. On Ascend, if `on_value` is Int64 dtype, `indices` must be Int64 dtype, and the value for `on_value` and `off_value` can only be 1 and 0. Args: axis (int): Position to insert the value. e.g. If shape of `indices` is :math:`(N, C)`, and `axis` is -1, the output shape will be :math:`(N, C, D)`, If `axis` is 0, the output shape will be :math:`(D, N, C)`. Default: ``-1`` . Inputs: - **indices** (Tensor) - A tensor of indices. Tensor of shape :math:`(X_0, \ldots, X_n)`. Data type must be int32 or int64. - **depth** (Union[int, Tensor]) - A scalar defining the depth of the one-hot dimension. - **on_value** (Tensor) - A value to fill in output when `indices[j] = i`. - **off_value** (Tensor) - A value to fill in output when `indices[j] != i`. It has the same data type as `on_value`. Outputs: Tensor, one-hot tensor. Tensor of shape :math:`(X_0, \ldots, X_{axis}, \text{depth} ,X_{axis+1}, \ldots, X_n)`. Raises: TypeError: If `axis` or `depth` is not an int. TypeError: If dtype of `on_value` is not int32, int64, float16 or float32. TypeError: If dtype of `indices` is not int32 or int64. TypeError: If `indices`, `on_value` or `off_value` is not a Tensor. ValueError: If `axis` is not in range [-1, len(indices_shape)]. ValueError: If `depth` is less than 0. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> indices = Tensor(np.array([0, 1, 2]), mindspore.int32) >>> depth, on_value, off_value = 3, Tensor(1.0, mindspore.float32), Tensor(0.0, mindspore.float32) >>> onehot = ops.OneHot() >>> output = onehot(indices, depth, on_value, off_value) >>> print(output) [[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]] """ @prim_arg_register def __init__(self, axis=-1): self._set_prim_arg("axis", axis) def __call__(self, indices, depth, on_value, off_value): return super().__call__(indices, depth, on_value, off_value, self.axis)
[文档]class OnesLike(Primitive): r""" Returns a Tensor with a value of 1 and its shape and data type is the same as the input. Refer to :func:`mindspore.ops.ones_like` for more details. Inputs: - **input_x** (Tensor) - Tensor of any dimension. Outputs: Tensor, has the same shape and type as `input_x` but filled with ones. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_x = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)) >>> output = ops.OnesLike()(input_x) >>> print(output) [[1 1] [1 1]] """ @prim_arg_register def __init__(self): pass def __call__(self, x): return super().__call__(x)
ones_like_op=OnesLike() class PagedAttentionMask(Primitive): r""" .. code-block:: prim = ops.PagedAttentionMask(head_num, scale_value, kv_head_num) out = prim(query, key_cache, value_cache, block_tables, context_lens, alibi_mask) is equivalent to .. code-block:: ops.paged_attention_mask(query, key_cache, value_cache, block_tables, context_lens, alibi_mask, head_num, scale_value, kv_head_num) Refer to :func:`mindspore.ops.paged_attention_mask` for more details. """ @prim_arg_register def __init__(self, head_num, scale_value, kv_head_num): self._set_prim_arg("head_num", head_num) self._set_prim_arg("scale_value", scale_value) self._set_prim_arg("kv_head_num", kv_head_num) def __call__(self, query, key_cache, value_cache, block_tables, context_lens, alibi_mask): return super().__call__(query, key_cache, value_cache, block_tables, context_lens, alibi_mask, self.head_num, self.scale_value, self.kv_head_num) class PagedAttention(Primitive): r""" .. code-block:: prim = ops.PagedAttention(head_num, scale_value, kv_head_num) out = prim(query, key_cache, value_cache, block_tables, context_lens) is equivalent to .. code-block:: ops.paged_attention(query, key_cache, value_cache, block_tables, context_lens, head_num, scale_value, kv_head_num) Refer to :func:`mindspore.ops.paged_attention` for more details. """ @prim_arg_register def __init__(self, head_num, scale_value, kv_head_num): self._set_prim_arg("head_num", head_num) self._set_prim_arg("scale_value", scale_value) self._set_prim_arg("kv_head_num", kv_head_num) def __call__(self, query, key_cache, value_cache, block_tables, context_lens): return super().__call__(query, key_cache, value_cache, block_tables, context_lens, self.head_num, self.scale_value, self.kv_head_num)
[文档]class Pow(Primitive): r""" .. code-block:: prim = ops.Pow() out = prim(input, exponent) is equivalent to .. code-block:: ops.pow(input, exponent) Refer to :func:`mindspore.ops.pow` for more details. """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, input, exponent): return super().__call__(input, exponent)
pow_op=Pow() class PReLUGrad(Primitive): r""" Gradients of PReLU operation. Note: 1-dimensional input_x is not supported. Inputs: - **dy** (Tensor) - Representing the backprop of the next layer. - **x** (Tensor) - Must be the input `x` of forward operator PRelu. - **weight** (Tensor) - Float Tensor, w > 0, must be the input `weight` of forward operator PRelu. Outputs: - **dx** (Tensor), with the same type as `x`. - **dw** (Tensor), with the same type as `weight`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` """ @prim_arg_register def __init__(self): pass def __call__(self, dy, x, weight): return super().__call__(dy, x, weight) prelu_grad_op=PReLUGrad()
[文档]class PReLU(Primitive): r""" .. code-block:: prim = ops.PReLU() out = prim(x, weight) is equivalent to .. code-block:: ops.prelu(x, weight) Refer to :func:`mindspore.ops.prelu` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, x, weight): return super().__call__(x, weight)
prelu_op=PReLU() class PromptKVCache(Primitive): r""" .. code-block:: prim = ops.PromptKVCache(align_mode) out = prim(cache, update, valid_seq_len, batch_index, seq_len_axis, new_max_seq_len, cur_max_seq_len) is equivalent to .. code-block:: ops.prompt_k_v_cache(cache, update, valid_seq_len, batch_index, seq_len_axis, new_max_seq_len, cur_max_seq_len, align_mode) Refer to :func:`mindspore.ops.prompt_k_v_cache` for more details. """ @prim_arg_register def __init__(self, align_mode='LEFT'): self._set_prim_arg_with_handler("align_mode", align_mode, str_to_enum) self.add_prim_attr("side_effect_mem", True) def __call__(self, cache, update, valid_seq_len, batch_index, seq_len_axis, new_max_seq_len, cur_max_seq_len): return super().__call__(cache, update, valid_seq_len, batch_index, seq_len_axis, new_max_seq_len, cur_max_seq_len, self.align_mode) class Qr(Primitive): r""" Returns the QR decomposition of one or more matrices. If `mode` is 'reduced'(the default), compute the P columns of Q where P is minimum of the 2 innermost dimensions of input. If `mode` is 'complete', compute full-sized Q and R. Args: full_matrices (bool, optional): Whether compute full-sized QR decomposition. Default: ``False`` . Inputs: - **x** (Tensor) - A matrix to be calculated. The matrix must be at least two dimensions, the supported dtype are float16, float32, float64, complex64 and complex128. Define the shape of input as :math:`(..., m, n)`, p as the minimum values of m and n. Outputs: - **Q** (Tensor) - The orthonormal matrices of input. If `mode` is 'complete', the shape is :math:`(m, m)`, else the shape is :math:`(m, p)`. The dtype of `Q` is same as `input`. - **R** (Tensor) - The upper triangular matrices of input. If `mode` is 'complete', the shape is :math:`(m, n)`, else the shape is :math:`(p, n)`. The dtype of `R` is same as `input`. Raises: TypeError: If `input` is not a Tensor. TypeError: If `mode` is neither 'reduced' nor 'complete'. ValueError: If the dimension of `input` is less than 2. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> from mindspore import Tensor, ops >>> import numpy as np >>> x = Tensor(np.array([[20., -31, 7], [4, 270, -90], [-8, 17, -32]]), ms.float32) >>> Q, R = ops.Qr()(x) >>> print(Q) [[-0.912871 0.16366126 0.37400758] [-0.18257418 -0.9830709 -0.01544376] [ 0.36514837 -0.08238228 0.92729706]] >>> print(R) [[ -21.908903 -14.788506 -1.6431675] [ 0. -271.9031 92.25824 ] [ 0. 0. -25.665514 ]] """ @prim_arg_register def __init__(self, full_matrices=False): self._set_prim_arg("full_matrices", full_matrices) def __call__(self, x): return super().__call__(x, self.full_matrices) class QuantBatchMatmul(Primitive): r""" .. code-block:: prim = ops.QuantBatchMatmul(transpose_x1, transpose_x2, dtype) out = prim(x1, x2, scale, offset, bias) is equivalent to .. code-block:: ops.quant_batch_matmul(x1, x2, scale, offset, bias, transpose_x1, transpose_x2, dtype) Refer to :func:`mindspore.ops.quant_batch_matmul` for more details. """ __mindspore_signature__ = ( sig.make_sig('x1', dtype=sig.sig_dtype.T), sig.make_sig('x2', dtype=sig.sig_dtype.T), sig.make_sig('scale', dtype=sig.sig_dtype.T1), sig.make_sig('offset', dtype=sig.sig_dtype.T2, default=None), sig.make_sig('bias', dtype=sig.sig_dtype.T3, default=None), ) @prim_arg_register def __init__(self, transpose_x1=False, transpose_x2=False, dtype=mstype.float16): self._set_prim_arg("transpose_x1", transpose_x1) self._set_prim_arg("transpose_x2", transpose_x2) self._set_prim_arg_with_handler("dtype", dtype, dtype_to_type_id) def __call__(self, x1, x2, scale, offset=None, bias=None): return super().__call__(x1, x2, scale, offset, bias, self.transpose_x1, self.transpose_x2, self.dtype)
[文档]class RandpermV2(Primitive): r""" .. code-block:: prim = ops.RandpermV2(seed, offset, dtype) out = prim(n) is equivalent to .. code-block:: ops.randperm(n, seed, offset, dtype) Refer to :func:`mindspore.ops.randperm` for more details. """ @prim_arg_register def __init__(self, seed=0, offset=0, dtype=mstype.int64): self._set_prim_arg("seed", type_it('RandpermV2', 'seed', seed, OpDtype.DT_TENSOR, OpDtype.DT_INT)) self._set_prim_arg("offset", type_it('RandpermV2', 'offset', offset, OpDtype.DT_TENSOR, OpDtype.DT_INT)) self._set_prim_arg_with_handler("dtype", dtype, dtype_to_type_id) def __call__(self, n): return super().__call__(n, self.seed, self.offset, self.dtype)
[文档]class Range(Primitive): r""" .. code-block:: prim = ops.Range(maxlen) out = prim(start, end, step) is equivalent to .. code-block:: ops.range(start, end, step, maxlen) Refer to :func:`mindspore.ops.range` for more details. """ @prim_arg_register def __init__(self, maxlen=1000000): self._set_prim_arg("maxlen", maxlen) def __call__(self, start, end, step): return super().__call__(start, end, step, self.maxlen)
[文档]class RealDiv(Primitive): r""" Divides the first input tensor by the second input tensor in floating-point type element-wise. Refer to :func:`mindspore.ops.div` for more details. Inputs: - **x** (Union[Tensor, Number, bool]) - The first input is a number or a bool or a tensor whose data type is number or bool. - **y** (Union[Tensor, Number, bool]) - The second input is a number or a bool when the first input is a tensor or a tensor whose data type is number or bool. Outputs: Tensor, the shape is the same as the one after broadcasting, and the data type is the one with higher precision or higher digits among the two inputs. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) >>> y = Tensor(np.array([4.0, 5.0, 6.0]), mindspore.float32) >>> realdiv = ops.RealDiv() >>> output = realdiv(x, y) >>> print(output) [0.25 0.4 0.5 ] """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, x, y): return super().__call__(x, y)
real_div_op=RealDiv()
[文档]class Real(Primitive): r""" .. code-block:: prim = ops.Real() out = prim(input) is equivalent to .. code-block:: ops.real(input) Refer to :func:`mindspore.ops.real` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
real_op=Real() class ReciprocalGrad(Primitive): r""" Performs grad of Reciprocal operation. """ @prim_arg_register def __init__(self): pass def __call__(self, y, dy): return super().__call__(y, dy) reciprocal_grad_op=ReciprocalGrad()
[文档]class Reciprocal(Primitive): r""" Returns reciprocal of a tensor element-wise. .. math:: out_{i} = \frac{1}{x_{i}} Inputs: - **x** (Tensor) - The input tensor. Outputs: Tensor, has the same shape as the `x`. Raises: TypeError: If `x` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) >>> reciprocal = ops.Reciprocal() >>> output = reciprocal(x) >>> print(output) [1. 0.5 0.25] """ @prim_arg_register def __init__(self): pass def __call__(self, x): return _convert_stub(pyboost_reciprocal(self, [x]))
reciprocal_op=Reciprocal()
[文档]class ReduceAll(Primitive): r""" Reduces a dimension of a tensor by the "logicalAND" of all elements in the dimension, by default. And also can reduce a dimension of `x` along the `axis`. Determine whether the dimensions of the output and input are the same by controlling `keep_dims`. Note: The `axis` with tensor type is only used for compatibility with older versions and is not recommended. Args: keep_dims (bool): If ``True`` , keep these reduced dimensions and the length is 1. If ``False`` , don't keep these dimensions. Default: ``False`` . Inputs: - **x** (Tensor[bool]) - The input tensor. The dtype of the tensor to be reduced is bool. - **axis** (Union[int, tuple(int), list(int), Tensor]) - The dimensions to reduce. Default: ``()`` , reduce all dimensions. Only constant value is allowed. Must be in the range [-rank(x), rank(x)). Outputs: Tensor, the dtype is bool. - If `axis` is ``()`` , and `keep_dims` is ``False`` , the output is a 0-D tensor representing the "logical and" of all elements in the input tensor. - If `axis` is int, set as 2, and `keep_dims` is ``False`` , the shape of output is :math:`(x_1, x_3, ..., x_R)`. - If `axis` is tuple(int), set as (2, 3), and `keep_dims` is ``False`` , the shape of output is :math:`(x_1, x_4, ..., x_R)`. - If `axis` is 1-D Tensor, set as [2, 3], and `keep_dims` is ``False`` , the shape of output is :math:`(x_1, x_4, ..., x_R)`. Raises: TypeError: If `keep_dims` is not a bool. TypeError: If `x` is not a Tensor. TypeError: If `axis` is not one of the following: int, tuple, list or Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([[True, False], [True, True]])) >>> op = ops.ReduceAll(keep_dims=True) >>> # case 1: Reduces a dimension by the "logicalAND" of all elements in the dimension. >>> output = op(x) >>> print(output) [[False]] >>> print(output.shape) (1, 1) >>> # case 2: Reduces a dimension along axis 0. >>> output = op(x, 0) >>> print(output) [[ True False]] >>> # case 3: Reduces a dimension along axis 1. >>> output = op(x, 1) >>> print(output) [[False] [ True]] >>> # case 4: input is a scalar. >>> x = Tensor(True) >>> op = ops.ReduceAll() >>> output = op(x) >>> print(output) True """ __mindspore_signature__ = ( sig.make_sig('x'), sig.make_sig('axis', default=()), ) @prim_arg_register def __init__(self, keep_dims=False): self._set_prim_arg("keep_dims", keep_dims) def __call__(self, x, axis=()): return super().__call__(x, axis, self.keep_dims)
[文档]class ReduceAny(Primitive): r""" Reduces a dimension of a tensor by the "logical OR" of all elements in the dimension, by default. And also can reduce a dimension of `x` along the `axis`. Determine whether the dimensions of the output and input are the same by controlling `keep_dims`. Note: The `axis` with tensor type is only used for compatibility with older versions and is not recommended. Args: keep_dims (bool): If ``True`` , keep these reduced dimensions and the length is 1. If ``False`` , don't keep these dimensions. Default: ``False`` . Inputs: - **x** (Tensor[bool]) - The input tensor. The dtype of the tensor to be reduced is bool. - **axis** (Union[int, tuple(int), list(int), Tensor]) - The dimensions to reduce. Default: ``()`` , reduce all dimensions. Only constant value is allowed. Must be in the range [-rank(x), rank(x)). Outputs: Tensor, the dtype is bool. - If `axis` is ``()`` , and `keep_dims` is ``False`` , the output is a 0-D tensor representing the "logical or" of all elements in the input tensor. - If `axis` is int, set as 2, and `keep_dims` is ``False`` , the shape of output is :math:`(x_1, x_3, ..., x_R)`. - If `axis` is tuple(int), set as (2, 3), and `keep_dims` is ``False`` , the shape of output is :math:`(x_1, x_4, ..., x_R)`. - If `axis` is 1-D Tensor, set as [2, 3], and `keep_dims` is ``False`` , the shape of output is :math:`(x_1, x_4, ..., x_R)`. Raises: TypeError: If `keep_dims` is not a bool. TypeError: If `x` is not a Tensor. TypeError: If `axis` is not one of the following: int, tuple, list or Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([[True, False], [True, True]])) >>> op = ops.ReduceAny(keep_dims=True) >>> # case 1: Reduces a dimension by the "logical OR" of all elements in the dimension. >>> output = op(x) >>> print(output) [[ True]] >>> print(output.shape) (1, 1) >>> # case 2: Reduces a dimension along axis 0. >>> output = op(x, 0) >>> print(output) [[ True True]] >>> # case 3: Reduces a dimension along axis 1. >>> output = op(x, 1) >>> print(output) [[True] [ True]] >>> # case 4: input is a scalar. >>> x = Tensor(True) >>> op = ops.ReduceAny() >>> output = op(x) >>> print(output) True """ __mindspore_signature__ = ( sig.make_sig('x'), sig.make_sig('axis', default=()), ) @prim_arg_register def __init__(self, keep_dims=False): self._set_prim_arg("keep_dims", keep_dims) def __call__(self, x, axis=()): return _convert_stub(pyboost_reduce_any(self, [x, axis, self.keep_dims]))
[文档]class ReduceMax(Primitive): r""" Reduces a dimension of a tensor by the maximum value in this dimension, by default. And also can reduce a dimension of `x` along the `axis`. Determine whether the dimensions of the output and input are the same by controlling `keep_dims`. Note: The `axis` with tensor type is only used for compatibility with older versions and is not recommended. Args: keep_dims (bool): If ``True`` , keep these reduced dimensions and the length is 1. If ``False`` , don't keep these dimensions. Default: ``False`` . Inputs: - **x** (Tensor[Number]) - The input tensor. - **axis** (Union[int, tuple(int), list(int), tensor]) - The dimensions to reduce. Default: ``()`` , reduce all dimensions. Must be in the range [-r, r). Outputs: output(Tensor): has the same dtype as the `x`. - If `axis` is ``()`` , and `keep_dims` is ``False`` , the output is a 0-D tensor representing the maximum of all elements in the input tensor. - If `axis` is int, set as 1, and `keep_dims` is ``False`` , the shape of output is :math:`(x_0, x_2, ..., x_R)`. - If `axis` is tuple(int) or list(int), set as (1, 2), and `keep_dims` is ``False`` , the shape of output is :math:`(x_0, x_3, ..., x_R)`. - If `axis` is 1-D Tensor, set as [1, 2], and `keep_dims` is ``False`` , the shape of output is :math:`(x_0, x_3, ..., x_R)`. Raises: TypeError: If `keep_dims` is not a bool. TypeError: If `x` is not a Tensor. TypeError: If `axis` is not one of the following: int, tuple, list or Tensor. ValueError: If `axis` is out of range. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) >>> output = ops.ReduceMax(keep_dims=True)(x, 1) >>> result = output.shape >>> print(result) (3, 1, 5, 6) >>> # case 1: Reduces a dimension by the maximum value of all elements in the dimension. >>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]], ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]], ... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mindspore.float32) >>> output = ops.ReduceMax(keep_dims=True)(x, ()) >>> print(output) [[[9.]]] >>> print(output.shape) (1, 1, 1) >>> # case 2: Reduces a dimension along axis 0. >>> output = ops.ReduceMax(keep_dims=True)(x, 0) >>> print(output) [[[7. 7. 7. 7. 7. 7.] [8. 8. 8. 8. 8. 8.] [9. 9. 9. 9. 9. 9.]]] >>> # case 3: Reduces a dimension along axis 1. >>> output = ops.ReduceMax(keep_dims=True)(x, 1) >>> print(output) [[[3. 3. 3. 3. 3. 3.]] [[6. 6. 6. 6. 6. 6.]] [[9. 9. 9. 9. 9. 9.]]] >>> # case 4: Reduces a dimension along axis 2. >>> output = ops.ReduceMax(keep_dims=True)(x, 2) >>> print(output) [[[1.] [2.] [3.]] [[4.] [5.] [6.]] [[7.] [8.] [9.]]] """ __mindspore_signature__ = ( sig.make_sig('x'), sig.make_sig('axis', default=()), ) @prim_arg_register def __init__(self, keep_dims=False): self._set_prim_arg("keep_dims", keep_dims) def __call__(self, x, axis=()): return super().__call__(x, axis, self.keep_dims)
[文档]class ReduceMean(Primitive): r""" Reduces a dimension of a tensor by averaging all elements in the dimension, by default. And also can reduce a dimension of `x` along the `axis`. Determine whether the dimensions of the output and input are the same by controlling `keep_dims`. Note: The `axis` with tensor type is only used for compatibility with older versions and is not recommended. Args: keep_dims (bool): If ``True`` , keep these reduced dimensions and the length is 1. If ``False`` , don't keep these dimensions. Default: ``False`` . Inputs: - **x** (Tensor[Number]) - The input tensor. - **axis** (Union[int, tuple(int), list(int), Tensor]) - The dimensions to reduce. Default: ``()`` , reduce all dimensions. Only constant value is allowed. Must be in the range [-r, r). Outputs: Tensor, has the same dtype as the `x`. - If `axis` is ``()`` , and `keep_dims` is ``False`` , the output is a 0-D tensor representing the mean of all elements in the input tensor. - If `axis` is int, set as 1, and `keep_dims` is ``False`` , the shape of output is :math:`(x_0, x_2, ..., x_R)`. - If `axis` is tuple(int) or list(int), set as (1, 2), and `keep_dims` is ``False`` , the shape of output is :math:`(x_0, x_3, ..., x_R)`. - If `axis` is 1-D Tensor, set as [1, 2], and `keep_dims` is ``False`` , the shape of output is :math:`(x_0, x_3, ..., x_R)`. Raises: TypeError: If `keep_dims` is not a bool. TypeError: If `x` is not a Tensor. TypeError: If `axis` is not one of the following: int, tuple, list or Tensor. ValueError: If `axis` is out of range. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) >>> op = ops.ReduceMean(keep_dims=True) >>> output = op(x, 1) >>> result = output.shape >>> print(result) (3, 1, 5, 6) >>> # case 1: Reduces a dimension by averaging all elements in the dimension. >>> x = Tensor(np.array([[[2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2]], ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]], ... [[6, 6, 6, 6, 6, 6], [8, 8, 8, 8, 8, 8], [10, 10, 10, 10, 10, 10]]]), ... mindspore.float32) >>> output = op(x) >>> print(output) [[[5.]]] >>> print(output.shape) (1, 1, 1) >>> # case 2: Reduces a dimension along the axis 0 >>> output = op(x, 0) >>> print(output) [[[4. 4. 4. 4. 4. 4.] [5. 5. 5. 5. 5. 5.] [6. 6. 6. 6. 6. 6.]]] >>> # case 3: Reduces a dimension along the axis 1 >>> output = op(x, 1) >>> print(output) [[[2. 2. 2. 2. 2. 2.]] [[5. 5. 5. 5. 5. 5.]] [[8. 8. 8. 8. 8. 8.]]] >>> # case 4: Reduces a dimension along the axis 2 >>> output = op(x, 2) >>> print(output) [[[ 2.] [ 2.] [ 2.]] [[ 4.] [ 5.] [ 6.]] [[ 6.] [ 8.] [10.]]] """ __mindspore_signature__ = ( sig.make_sig('x'), sig.make_sig('axis', default=()), ) @prim_arg_register def __init__(self, keep_dims=False): self._set_prim_arg("keep_dims", keep_dims) def __call__(self, x, axis=()): return super().__call__(x, axis, self.keep_dims)
[文档]class ReduceMin(Primitive): r""" Reduces a dimension of a tensor by the minimum value in the dimension, by default. And also can reduce a dimension of `x` along the `axis`. Determine whether the dimensions of the output and input are the same by controlling `keep_dims`. Note: The `axis` with tensor type is only used for compatibility with older versions and is not recommended. Args: keep_dims (bool): If ``True`` , keep these reduced dimensions and the length is 1. If ``False`` , don't keep these dimensions. Default: ``False`` . Inputs: - **x** (Tensor[Number]) - The input tensor. - **axis** (Union[int, tuple(int), list(int), Tensor]) - The dimensions to reduce. Default: ``()`` , reduce all dimensions. Only constant value is allowed. Must be in the range [-r, r). Outputs: Tensor, has the same dtype as the `x`. - If `axis` is ``()`` , and `keep_dims` is ``False`` , the output is a 0-D tensor representing the minimum of all elements in the input tensor. - If `axis` is int, set as 1, and `keep_dims` is ``False`` , the shape of output is :math:`(x_0, x_2, ..., x_R)`. - If `axis` is tuple(int), set as (1, 2), and `keep_dims` is ``False`` , the shape of output is :math:`(x_0, x_3, ..., x_R)`. - If `axis` is 1-D Tensor, set as [1, 2], and `keep_dims` is ``False`` , the shape of output is :math:`(x_0, x_3, ..., x_R)`. Raises: TypeError: If `keep_dims` is not a bool. TypeError: If `x` is not a Tensor. TypeError: If `axis` is not one of the following: int, tuple, list or Tensor. ValueError: If `axis` is out of range. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) >>> op = ops.ReduceMin(keep_dims=True) >>> output = op(x, 1) >>> result = output.shape >>> print(result) (3, 1, 5, 6) >>> # case 1: Reduces a dimension by the minimum value of all elements in the dimension. >>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]], ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]], ... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mindspore.float32) >>> output = op(x) >>> print(output) [[[1.]]] >>> print(output.shape) (1, 1, 1) >>> # case 2: Reduces a dimension along axis 0. >>> output = op(x, 0) >>> print(output) [[[1. 1. 1. 1. 1. 1.] [2. 2. 2. 2. 2. 2.] [3. 3. 3. 3. 3. 3.]]] >>> # case 3: Reduces a dimension along axis 1. >>> output = op(x, 1) >>> print(output) [[[1. 1. 1. 1. 1. 1.]] [[4. 4. 4. 4. 4. 4.]] [[7. 7. 7. 7. 7. 7.]]] >>> # case 4: Reduces a dimension along axis 2. >>> output = op(x, 2) >>> print(output) [[[1.] [2.] [3.]] [[4.] [5.] [6.]] [[7.] [8.] [9.]]] """ __mindspore_signature__ = ( sig.make_sig('x'), sig.make_sig('axis', default=()), ) @prim_arg_register def __init__(self, keep_dims=False): self._set_prim_arg("keep_dims", keep_dims) def __call__(self, x, axis=()): return super().__call__(x, axis, self.keep_dims)
[文档]class ReduceProd(Primitive): r""" Reduces a dimension of a tensor by multiplying all elements in the dimension, by default. And also can reduce a dimension of `x` along the `axis`. Determine whether the dimensions of the output and input are the same by controlling `keep_dims`. Note: The `axis` with tensor type is only used for compatibility with older versions and is not recommended. Args: keep_dims (bool): If ``True`` , keep these reduced dimensions and the length is 1. If ``False`` , don't keep these dimensions. Default: ``False`` . Inputs: - **x** (Tensor[Number]) - The input tensor. - **axis** (Union[int, tuple(int), list(int), Tensor]) - The dimensions to reduce. Default: ``()`` , reduce all dimensions. Only constant value is allowed. Must be in the range [-r, r). Outputs: Tensor, has the same dtype as the `x`. - If `axis` is ``()`` , and `keep_dims` is ``False`` , the output is a 0-D tensor representing the product of all elements in the input tensor. - If `axis` is int, set as 1, and `keep_dims` is ``False`` , the shape of output is :math:`(x_0, x_2, ..., x_R)`. - If `axis` is tuple(int), set as (1, 2), and `keep_dims` is ``False`` , the shape of output is :math:`(x_0, x_3, ..., x_R)`. - If `axis` is 1-D Tensor, set as [1, 2], and `keep_dims` is ``False`` , the shape of output is :math:`(x_0, x_3, ..., x_R)`. Raises: TypeError: If `keep_dims` is not a bool. TypeError: If `x` is not a Tensor. TypeError: If `axis` is not one of the following: int, tuple, list or Tensor. ValueError: If `axis` is out of range. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) >>> op = ops.ReduceProd(keep_dims=True) >>> output = op(x, 1) >>> result = output.shape >>> print(result) (3, 1, 5, 6) >>> # case 1: Reduces a dimension by multiplying all elements in the dimension. >>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]], ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]], ... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mindspore.float32) >>> output = op(x) >>> print(output) [[[2.2833798e+33]]] >>> print(output.shape) (1, 1, 1) >>> # case 2: Reduces a dimension along axis 0. >>> output = op(x, 0) >>> print(output) [[[ 28. 28. 28. 28. 28. 28.] [ 80. 80. 80. 80. 80. 80.] [162. 162. 162. 162. 162. 162.]]] >>> # case 3: Reduces a dimension along axis 1. >>> output = op(x, 1) >>> print(output) [[[ 6. 6. 6. 6. 6. 6.]] [[120. 120. 120. 120. 120. 120.]] [[504. 504. 504. 504. 504. 504.]]] >>> # case 4: Reduces a dimension along axis 2. >>> output = op(x, 2) >>> print(output) [[[1.00000e+00] [6.40000e+01] [7.29000e+02]] [[4.09600e+03] [1.56250e+04] [4.66560e+04]] [[1.17649e+05] [2.62144e+05] [5.31441e+05]]] """ __mindspore_signature__ = ( sig.make_sig('x'), sig.make_sig('axis', default=()), ) @prim_arg_register def __init__(self, keep_dims=False): self._set_prim_arg("keep_dims", keep_dims) def __call__(self, x, axis=()): return super().__call__(x, axis, self.keep_dims)
class ReduceStd(Primitive): r""" Returns the standard-deviation and mean of the input Tensor along dimension(s) specified by `axis`. Note: The `axis` with tensor type is only used for compatibility with older versions and is not recommended. Args: axis (Union[int, tuple(int), list(int), Tensor], optional): The dimensions to reduce. Default: ``()`` , reduce all dimensions. Only constant value is allowed. Let `r` be rank of `input_x`, it should be in the range :math:`[-r,r)`. unbiased (bool, optional): Whether to use Bessel's correction. If ``True`` , will use the Bessel correction unbiased estimation. If ``False`` , will through the biased estimation to calculate the standard deviation. Default: ``True`` . keep_dims (bool, optional): Whether the output Tensor has dim retained or not. If ``True`` , keep these reduced dimensions specified by `axis` and the length is 1. If ``False`` , don't keep these dimensions. Default: ``Fasle`` . Inputs: - **input_x** (Tensor[Number]) - The input Tensor with shape :math:`(N, *)` where :math:`*` means any number of additional dimensions. Supported dtypes: float16, float32. Outputs: Tuple(output_std, output_mean) containing the standard deviation and mean. Raises: TypeError: If `keep_dims` is not a bool. TypeError: If `input_x` is not a Tensor. ValueError: If `axis` is not one of the following: int, tuple, list or Tensor. Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import ops, Tensor >>> input_x = Tensor(np.array([[1, 2, 3], [-1, 1, 4]]).astype(np.float32)) >>> op = ops.ReduceStd(axis=1, unbiased=True, keep_dims=False) >>> output = op(input_x) >>> output_std, output_mean = output[0], output[1] >>> print(output_std) [1. 2.5166113] >>> print(output_mean) [2. 1.3333334] """ @prim_arg_register def __init__(self, axis=[], unbiased=True, keep_dims=False): self._set_prim_arg("axis", type_it('ReduceStd', 'axis', axis, (OpDtype.DT_INT, OpDtype.DT_LIST_INT, OpDtype.DT_TENSOR), OpDtype.DT_TUPLE_INT)) self._set_prim_arg("unbiased", unbiased) self._set_prim_arg("keep_dims", keep_dims) def __call__(self, x): return super().__call__(x, self.axis, self.unbiased, self.keep_dims)
[文档]class ReduceSum(Primitive): r""" Reduces a dimension of a tensor by summing all elements in the dimension, by default. And also can reduce a dimension of `x` along the `axis`. Determine whether the dimensions of the output and input are the same by controlling `keep_dims`. Note: The `axis` with tensor type is only used for compatibility with older versions and is not recommended. Args: keep_dims (bool): If ``True`` , keep these reduced dimensions and the length is 1. If ``False`` , don't keep these dimensions. Default: ``False`` . skip_mode (bool): If ``True`` and `axis` is empty tuple or empty list, the ReduceSum operation isn't performed, skip it. If ``True`` and `axis` is other values, the ReduceSum calculation is performed normally. If ``False`` , do reduce. Default: ``False`` . Inputs: - **x** (Tensor[Number]) - The input tensor. - **axis** (Union[int, tuple(int), list(int), Tensor]) - The dimensions to reduce. Default: ``()`` , reduce all dimensions when `skip_mode` is ``False`` . Only constant value is allowed. Must be in the range [-rank(`x`), rank(`x`)). Outputs: Tensor, has the same dtype as the `x`. - If `axis` is ``()`` , `keep_dims` is ``False`` , and `skip_mode` is ``False`` , the output is a 0-D tensor representing the sum of all elements in the input tensor. - If `axis` is ``()`` , and `skip_mode` is ``True`` , the ReduceSum operation is not performed, output tensor is equal to the input tensor. - If `axis` is int, set as 2, and `keep_dims` is ``False`` , the shape of output is :math:`(x_1, x_3, ..., x_R)`. - If `axis` is tuple(int) or list(int), set as (2, 3), and `keep_dims` is ``False`` , the shape of output is :math:`(x_1, x_4, ..., x_R)`. - If `axis` is 1-D Tensor, set as [2, 3], and `keep_dims` is ``False`` , the shape of output is :math:`(x_1, x_4, ..., x_R)`. Raises: TypeError: If `keep_dims` is not a bool. TypeError: If `skip_mode` is not a bool. TypeError: If `x` is not a Tensor. ValueError: If `axis` is None. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) >>> op = ops.ReduceSum(keep_dims=True) >>> output = op(x, 1) >>> output.shape (3, 1, 5, 6) >>> # case 1: Reduces a dimension by summing all elements in the dimension. >>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]], ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]], ... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mindspore.float32) >>> output = op(x) >>> print(output) [[[270.]]] >>> print(output.shape) (1, 1, 1) >>> # case 2: Reduces a dimension along axis 0. >>> output = op(x, 0) >>> print(output) [[[12. 12. 12. 12. 12. 12.] [15. 15. 15. 15. 15. 15.] [18. 18. 18. 18. 18. 18.]]] >>> # case 3: Reduces a dimension along axis 1. >>> output = op(x, 1) >>> print(output) [[[ 6. 6. 6. 6. 6. 6.]] [[15. 15. 15. 15. 15. 15.]] [[24. 24. 24. 24. 24. 24.]]] >>> # case 4: Reduces a dimension along axis 2. >>> output = op(x, 2) >>> print(output) [[[ 6.] [12.] [18.]] [[24.] [30.] [36.]] [[42.] [48.] [54.]]] """ __mindspore_signature__ = ( sig.make_sig('x'), sig.make_sig('axis', default=()), ) @prim_arg_register def __init__(self, keep_dims=False, skip_mode=False): self._set_prim_arg("keep_dims", keep_dims) self._set_prim_arg("skip_mode", skip_mode) def __call__(self, x, axis=()): return super().__call__(x, axis, self.keep_dims, self.skip_mode)
class ReLU6Grad(Primitive): r""" Computes gradient for the ReLU6 activation. Args: y_backprop (Tensor): Input gradients tensor, has the same dtype and shape as `x`. x (Tensor): Origin input tensor. Returns: Tensor, has the same dtype and shape as `x`. """ @prim_arg_register def __init__(self): pass def __call__(self, y_backprop, x): return super().__call__(y_backprop, x) relu6_grad_op=ReLU6Grad()
[文档]class ReLU6(Primitive): r""" .. code-block:: prim = ops.ReLU6() out = prim(x) is equivalent to .. code-block:: ops.relu6(x) Refer to :func:`mindspore.ops.relu6` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, x): return super().__call__(x)
relu6_op=ReLU6() class ReluGrad(Primitive): r""" Computes gradient for the ReLU activation. Args: y_backprop (Tensor): Input gradients tensor, has the same dtype and shape as `x`. x (Tensor): Origin input tensor. Returns: Tensor, has the same dtype and shape as `x`. """ @prim_arg_register def __init__(self): pass def __call__(self, y_backprop, x): return _convert_stub(pyboost_relu_grad(self, [y_backprop, x])) relu_grad_op=ReluGrad()
[文档]class ReLU(Primitive): r""" .. code-block:: prim = ops.ReLU() out = prim(input) is equivalent to .. code-block:: ops.relu(input) Refer to :func:`mindspore.ops.relu` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return _convert_stub(pyboost_relu(self, [input]))
relu_op=ReLU() class ReshapeAndCache(Primitive): r""" .. code-block:: prim = ops.ReshapeAndCache() out = prim(key, value, key_cache, value_cache, slot_mapping) is equivalent to .. code-block:: ops.reshape_and_cache(key, value, key_cache, value_cache, slot_mapping) Refer to :func:`mindspore.ops.reshape_and_cache` for more details. """ __mindspore_signature__ = ( sig.make_sig('key', dtype=sig.sig_dtype.T), sig.make_sig('value', dtype=sig.sig_dtype.T), sig.make_sig('key_cache', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('value_cache', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('slot_mapping', dtype=sig.sig_dtype.T1), ) @prim_arg_register def __init__(self): self.add_prim_attr("side_effect_mem", True) def __call__(self, key, value, key_cache, value_cache, slot_mapping): return super().__call__(key, value, key_cache, value_cache, slot_mapping) reshape_and_cache_op=ReshapeAndCache()
[文档]class Reshape(Primitive): r""" .. code-block:: prim = ops.Reshape() out = prim(input, shape) is equivalent to .. code-block:: ops.reshape(input, shape) Refer to :func:`mindspore.ops.reshape` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input, shape): return super().__call__(input, shape)
reshape_op=Reshape() class ResizeBicubicGrad(Primitive): r""" Computes gradients for ResizeBicubicGrad operation. Args: grads (Tensor): A Tensor of type float. 4-D with shape [batch, height, width, channels]. The format must be NHWC. image (Tensor): A Tensor. Must be one of the following types: float, double. 4-D with shape [batch, orig_height, orig_width, channels], The origin image tensor that was resized. The format must be NHWC. align_corners (bool): If true, the centers of the 4 corner pixels of the input and output tensors are aligned, preserving the values at the corner pixels.Default: ``False``. half_pixel_centers (bool): An optional bool. Default: ``False``. Outputs: A 4-D Tensor , with the same shape and data type as `image`. Rasise: TypeError: If `grads` is not allowed. TypeError: If `image` is not allowed. ValueError: If `image` dim is not 4. ValueError: If `size` dim is not 4. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` """ @prim_arg_register def __init__(self, align_corners=False, half_pixel_centers=False): self._set_prim_arg("align_corners", align_corners) self._set_prim_arg("half_pixel_centers", half_pixel_centers) def __call__(self, grads, image): return super().__call__(grads, image, self.align_corners, self.half_pixel_centers)
[文档]class ResizeBicubic(Primitive): r""" Resize images to size using bicubic interpolation. .. warning:: This is an experimental API that is subject to change or deletion. Args: align_corners (bool, optional): If ``True`` , the centers of the 4 corner pixels of the input and output tensors are aligned, preserving the values at the corner pixels. Default: ``False`` . half_pixel_centers (bool, optional): Whether to use half-pixel center alignment. If set to ``True`` , `align_corners` should be ``False`` . Default: ``False`` . Inputs: - **images** (Tensor) - The input image must be a 4-D tensor of shape :math:`(batch, channels, height, width)`. The format must be NCHW. Types allowed: float16, float32, float64. - **size** (Union[tuple[int], Tensor[int]]) - A 1-D tensor or tuple with 2 elements: new_height, new_width. Besides, tuple[int] is recommended. Outputs: A 4-D tensor with shape :math:`(batch, channels, new\_height, new\_width)` whose dtype is the same as `images` . Raises: TypeError: If the type of `images` is not allowed. TypeError: If the type of `align_corners` is not bool. TypeError: If the type of `half_pixel_centers` is not bool. ValueError: If the dim of `images` is not 4. ValueError: If the dim of `size` is not 1 when `size` is a tensor. ValueError: If the number of elements in `size` is not 2. ValueError: If any value of `size` is not positive. ValueError: If the values of `align_corners` and `half_pixel_centers` are both ``True`` . Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops, nn >>> class NetResizeBicubic(nn.Cell): ... def __init__(self): ... super(NetResizeBicubic, self).__init__() ... align_corners = False ... half_pixel_centers = False ... self.resize = ops.ResizeBicubic(align_corners, half_pixel_centers) ... ... def construct(self, images, size): ... return self.resize(images, size) ... >>> images = Tensor(np.array([1, 2, 3, 4]).reshape(1, 1, 2, 2).astype(np.float32)) >>> size = Tensor([1, 4], mindspore.int32) >>> resizebicubic = NetResizeBicubic() >>> output = resizebicubic(images, size) >>> print(output) [[[[1. 1.5 2. 2.09375]]]] """ @prim_arg_register def __init__(self, align_corners=False, half_pixel_centers=False): self._set_prim_arg("align_corners", align_corners) self._set_prim_arg("half_pixel_centers", half_pixel_centers) def __call__(self, image, size): return super().__call__(image, size, self.align_corners, self.half_pixel_centers)
class ResizeBilinearGrad(Primitive): r""" Performs grad of ResizeBilinear operation. Args: grads (Tensor): A 4-D Tensor with shape [batch, channel, height, width]. image (Tensor): A 4-D Tensor with shape [batch, channel, height, width], The origin image tensor that was resized. align_corners (bool): If true, the centers of the 4 corner pixels of the input and output tensors are aligned, preserving the values at the corner pixels.Default: ``False``. half_pixel_centers (bool): An optional bool. Default: ``False``. Outputs: A 4-D Tensor , with the same shape and data type as `image`. """ @prim_arg_register def __init__(self, align_corners=False, half_pixel_centers=False): self._set_prim_arg("align_corners", align_corners) self._set_prim_arg("half_pixel_centers", half_pixel_centers) def __call__(self, grads, image): return super().__call__(grads, image, self.align_corners, self.half_pixel_centers)
[文档]class ResizeBilinearV2(Primitive): r""" Resizes an image to a certain size using the bilinear interpolation. The resizing only affects the lower two dimensions which represent the height and width. .. warning:: This is an experimental API that is subject to change or deletion. Args: align_corners (bool, optional): If ``True`` , rescale input by :math:`(new\_height - 1) / (height - 1)`, which exactly aligns the 4 corners of images and resized images. If ``False`` , rescale by :math:`new\_height / height`. Default: ``False`` . half_pixel_centers (bool, optional): Whether half pixel center. If set to ``True`` , `align_corners` should be ``False`` . Default: ``False`` . Inputs: - **x** (Tensor) - Image to be resized. Input images must be a 4-D tensor with shape :math:`(batch, channels, height, width)`, with data type of float32 or float16. - **size** (Union[tuple[int], list[int], Tensor]) - The new size of the images. A tuple or list or Tensor of 2 int elements :math:`(new\_height, new\_width)`. Outputs: Tensor, resized image. 4-D with shape :math:`(batch, channels, new\_height, new\_width)`, with the same data type as input `x`. Raises: TypeError: If `align_corners` is not a bool. TypeError: If `half_pixel_centers` is not a bool. TypeError: If `align_corners` and `half_pixel_centers` are all ``True`` . ValueError: If `half_pixel_centers` is ``True`` and device_target is CPU. ValueError: If dim of `x` is not 4. ValueError: If `size` is Tensor and its dim is not 1. ValueError: If `size` contains other than 2 elements. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> from mindspore import Tensor, ops >>> x = Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mindspore.float32) >>> output = ops.ResizeBilinearV2()(x, (5, 5)) >>> print(output) [[[[1. 2. 3. 4. 5.] [1. 2. 3. 4. 5.] [1. 2. 3. 4. 5.] [1. 2. 3. 4. 5.] [1. 2. 3. 4. 5.]]]] """ @prim_arg_register def __init__(self, align_corners=False, half_pixel_centers=False): self._set_prim_arg("align_corners", align_corners) self._set_prim_arg("half_pixel_centers", half_pixel_centers) def __call__(self, image, size): return super().__call__(image, size, self.align_corners, self.half_pixel_centers)
class ResizeLinear1DGrad(Primitive): r""" Compute gradient of `ResizeLinear1D` operator. .. warning:: This is an experimental API that is subject to change. Args: grads (Tensor): A Tensor of type float. 3-D with shape [batch, channel, width]. x (Tensor): A origin input Tensor. 3-D with shape [batch, channel, orig_width], The origin tensor that was resized. coordinate_transformation_mode (string): Default is 'align_corners'. Describes how to transform the coordinate in the resized tensor to the coordinate in the original tensor. Other optional: 'half_pixel'. """ @prim_arg_register def __init__(self, coordinate_transformation_mode='align_corners'): self._set_prim_arg_with_handler("coordinate_transformation_mode", coordinate_transformation_mode, str_to_enum) def __call__(self, grads, x): return super().__call__(grads, x, self.coordinate_transformation_mode) class ResizeLinear1D(Primitive): r""" Using the linear interpolate method resize the input tensor 'x'. For general resize, refer to :func:`mindspore.ops.interpolate` for more details. .. warning:: - This is an experimental API that is subject to change. - Currently, the Ascend platform only supports scenarios where the input `size` is Tuple or List. Args: coordinate_transformation_mode (str): Default is ``'align_corners'`` . Describes how to transform the coordinate in the resized tensor to the coordinate in the original tensor. Other optional: 'half_pixel'. Inputs: - **x** (Tensor) - A 3-D tensor which to resize, with shape [batch, channel, width]. Must be one of the following types: float16, float32, float64. - **size** (Union[Tuple[int], List[int], Tensor[int]]) - describes the new width of `x` . A tuple or list or 1-D tensor with only one int element :math:`(new\_width)`. Outputs: A 3-D tensor which shape is [batch, channel, new_width] with the same type as `x`. Raises: TypeError: If dtype of `x` is not in the support list. TypeError: If `size` is not in Union[Tuple[int], List[int], Tensor[int]]. TypeError: If `coordinate_transformation_mode` is not a string. TypeError: If `coordinate_transformation_mode` is not in the support list. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x = Tensor([[[1, 2, 3], [4, 5, 6]]], mindspore.float32) >>> size = (6,) >>> resize_linear_1d = ops.ResizeLinear1D(coordinate_transformation_mode="align_corners") >>> output = resize_linear_1d(x, size) >>> print(output) [[[1. 1.4 1.8 2.2 2.6 3.] [4. 4.4 4.8 5.2 5.6 6.]]] """ @prim_arg_register def __init__(self, coordinate_transformation_mode='align_corners'): self._set_prim_arg_with_handler("coordinate_transformation_mode", coordinate_transformation_mode, str_to_enum) def __call__(self, x, size): return super().__call__(x, size, self.coordinate_transformation_mode) class ResizeNearestNeighborGrad(Primitive): r""" Compute gradient of `ResizeNearestNeighbor` operator. Note: The shape of input parameter `size` must be (height, width). Inputs: - **align_corners** (bool) - Whether the centers of the 4 corner pixels of the input and output tensors are aligned. Default: ``False``. - **half_pixel_centers** (bool, optional) - Whether half pixel center. If set to ``True``, `align_corners` should be False. Default: ``False``. """ @prim_arg_register def __init__(self, align_corners=False, half_pixel_centers=False): self._set_prim_arg("align_corners", align_corners) self._set_prim_arg("half_pixel_centers", half_pixel_centers) def __call__(self, grads, size): return super().__call__(grads, size, self.align_corners, self.half_pixel_centers)
[文档]class ResizeNearestNeighbor(Primitive): r""" Resizes the input tensor to a given size by using the nearest neighbor algorithm. The nearest neighbor algorithm selects the value of the nearest point and does not consider the values of neighboring points at all, yielding a piecewise-constant interpolant. Args: size (Union[tuple, list]): The target size. The dimension of size must be 2. align_corners (bool): Whether the centers of the 4 corner pixels of the input and output tensors are aligned. Default: ``False`` . half_pixel_centers (bool, optional): Whether half pixel center. If set to ``True`` , `align_corners` should be False. Default: ``False`` . Inputs: - **input_x** (Tensor) - The input tensor. The shape of the tensor is :math:`(N, C, H, W)`. Outputs: Tensor, the shape of the output tensor is :math:`(N, C, NEW\_H, NEW\_W)`. The data type is the same as the `input_x`. Raises: TypeError: If `size` is neither tuple nor list. TypeError: If `align_corners` is not a bool. ValueError: If length of `size` is not equal to 2. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor, ops >>> input_tensor = Tensor(np.array([[[[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]]]), mindspore.float32) >>> size = (2, 2) >>> output = ops.ResizeNearestNeighbor(size=size)(input_tensor) >>> print(output) [[[[-0.1 0.3] [ 0.4 0.5]]]] """ @prim_arg_register def __init__(self, size, align_corners=False, half_pixel_centers=False): self._set_prim_arg("size", type_it('ResizeNearestNeighbor', 'size', size, OpDtype.DT_LIST_INT, OpDtype.DT_TUPLE_INT)) self._set_prim_arg("align_corners", align_corners) self._set_prim_arg("half_pixel_centers", half_pixel_centers) def __call__(self, input_x): return super().__call__(input_x, self.size, self.align_corners, self.half_pixel_centers)
class ResizeNearestNeighborV2Grad(Primitive): r""" Compute gradient of `ResizeNearestNeighborV2` operator. Args: grads (Tensor): A 4-D Tensor with shape [batch, channel, height, width]. size (Union[tuple[int], Tensor]): The size for the input image. 2 elements: [`height, width`]. align_corners (bool): Whether the centers of the 4 corner pixels of the input and output tensors are aligned. Default: ``False``. half_pixel_centers (bool): Default: ``False``. Outputs: A 4-D Tensor , with the same shape and data type as `image`. """ @prim_arg_register def __init__(self, align_corners=False, half_pixel_centers=False): self._set_prim_arg("align_corners", align_corners) self._set_prim_arg("half_pixel_centers", half_pixel_centers) def __call__(self, grads, size): return super().__call__(grads, size, self.align_corners, self.half_pixel_centers) class ResizeNearestNeighborV2(Primitive): r""" Resizes the input tensor to specific size by using the nearest neighbor algorithm. The nearest neighbor algorithm selects the value of the nearest point and does not consider the values of neighboring points at all, yielding a piecewise-constant interpolant. Args: align_corners (bool, optional): If ``True`` , the centers of the 4 corner pixels of the input and output tensors are aligned, preserving the values at the corner pixels. Default: ``False`` . half_pixel_centers (bool, optional): Whether half pixel center. If set to ``True`` , `align_corners` should be False. Default: ``False`` . Inputs: - **x** (Tensor) - 4-D with shape :math:`(batch, channels, height, width)` . - **size** (Tensor) - The new size for the images. A 1-D int32 Tensor of 2 elements: [`new_height, new_width`]. Outputs: - **y** (Tensor) - The resized images. A 4-D with shape :math:`(batch, channels, new\_height, new\_width)`. It has the same dtype as `x`. Raises: TypeError: If `x` or `size` is not a Tensor. TypeError: If the data type of `size` is not int32. TypeError: If `align_corners` or `half_pixel_centers` is not bool. ValueError: If any value of `size` is non positive. ValueError: If the dimension of `x` is not 4. ValueError: If the dimension of `size` is not 1. ValueError: If the elements number of `size` is not 2. ValueError: If attr `half_pixel_centers` and `align_corners` are True at the same time. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor, ops >>> from mindspore import dtype as mstype >>> input_tensor = Tensor(np.ones((1, 1, 4, 4)), mstype.float32) >>> size = Tensor([2, 2], mstype.int32) >>> resize = ops.ResizeNearestNeighborV2() >>> output = resize(input_tensor, size) >>> print(output) [[[[1. 1.] [1. 1.]]]] >>> print(output.shape) (1, 1, 2, 2) """ @prim_arg_register def __init__(self, align_corners=False, half_pixel_centers=False): self._set_prim_arg("align_corners", align_corners) self._set_prim_arg("half_pixel_centers", half_pixel_centers) def __call__(self, image, size): return super().__call__(image, size, self.align_corners, self.half_pixel_centers)
[文档]class ReverseV2(Primitive): r""" .. code-block:: prim = ops.ReverseV2(axis) out = prim(x) is equivalent to .. code-block:: ops.reverse(x, axis) Refer to :func:`mindspore.ops.reverse` for more details. """ @prim_arg_register def __init__(self, axis): self._set_prim_arg("axis", type_it('ReverseV2', 'axis', axis, OpDtype.DT_LIST_INT, OpDtype.DT_TUPLE_INT)) def __call__(self, x): return super().__call__(x, self.axis)
class RFFTGrad(Primitive): r""" """ __mindspore_signature__ = ( sig.make_sig('input1'), sig.make_sig('input2'), sig.make_sig('n', default=None), sig.make_sig('dim', default=-1), sig.make_sig('norm', default=None), ) @prim_arg_register def __init__(self): pass def __call__(self, input1, input2, n=None, dim=-1, norm=None): return super().__call__(input1, input2, n, dim, norm if norm is None else str_to_enum('RFFTGrad', 'norm', norm)) rfft_grad_op=RFFTGrad() class RFFT(Primitive): r""" .. code-block:: prim = ops.RFFT() out = prim(input, n, dim, norm) is equivalent to .. code-block:: ops.rfft(input, n, dim, norm) Refer to :func:`mindspore.ops.rfft` for more details. """ __mindspore_signature__ = ( sig.make_sig('input'), sig.make_sig('n', default=None), sig.make_sig('dim', default=-1), sig.make_sig('norm', default=None), ) @prim_arg_register def __init__(self): pass def __call__(self, input, n=None, dim=-1, norm=None): return super().__call__(input, n, dim, norm if norm is None else str_to_enum('RFFT', 'norm', norm)) rfft_op=RFFT()
[文档]class RightShift(Primitive): r""" Shift the value of each position of Tensor `input_x` to the right by corresponding bits in Tensor `input_y`. The inputs are two tensors, dtypes of them must be consistent, and the shapes of them could be broadcast. .. math:: \begin{aligned} &out_{i} =x_{i} >> y_{i} \end{aligned} .. warning:: This is an experimental API that is subject to change or deletion. Inputs: - **input_x** (Tensor) - The target tensor, will be shifted to the right by `input_y` bits element-wise. Support all int and uint types. - **input_y** (Tensor) - Number of bits shifted, the tensor must have the same type as `input_x`. Outputs: - **output** (Tensor) - The output tensor, has the same type as `input_x`. Raises: TypeError: If `input_x` or `input_y` is not tensor. TypeError: If `input_x` and `input_y` could not be broadcast. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_x = Tensor(np.array([1, 2, 3]).astype(np.uint8)) >>> input_y = Tensor(np.array([1, 1, 1]).astype(np.uint8)) >>> output = ops.RightShift()(input_x, input_y) >>> print(output) [0 1 1] """ @prim_arg_register def __init__(self): pass def __call__(self, input_x, input_y): return super().__call__(input_x, input_y)
right_shift_op=RightShift() class Roll(Primitive): r""" Rolls the elements of a tensor along an axis. Refer to :func:`mindspore.ops.roll` for more details. Args: shift (Union[list(int), tuple(int), int]): Specifies the number of places by which elements are shifted positively (towards larger indices) along the specified dimension. Negative shifts will roll the elements in the opposite direction. axis (Union[list(int), tuple(int), int]): Specifies the dimension indexes of shape to be rolled. Inputs: - **input_x** (Tensor) - Input tensor. Outputs: Tensor, has the same shape and type as `input_x`. Supported Platforms: ``GPU`` Examples: >>> input_x = Tensor(np.array([0, 1, 2, 3, 4]).astype(np.float32)) >>> op = ops.Roll(shift=2, axis=0) >>> output = op(input_x) >>> print(output) [3. 4. 0. 1. 2.] >>> input_x = Tensor(np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]).astype(np.float32)) >>> op = ops.Roll(shift=-1, axis=0) >>> output = op(input_x) >>> print(output) [[5. 6. 7. 8. 9.] [0. 1. 2. 3. 4.]] """ @prim_arg_register def __init__(self, shift, axis): self._set_prim_arg("shift", type_it('Roll', 'shift', shift, (OpDtype.DT_INT, OpDtype.DT_LIST_INT), OpDtype.DT_TUPLE_INT)) self._set_prim_arg("axis", type_it('Roll', 'axis', axis, (OpDtype.DT_INT, OpDtype.DT_LIST_INT), OpDtype.DT_TUPLE_INT)) def __call__(self, input): return super().__call__(input, self.shift, self.axis)
[文档]class Round(Primitive): r""" .. code-block:: prim = ops.Round() out = prim(input) is equivalent to .. code-block:: ops.round(input) Refer to :func:`mindspore.ops.round` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
round_op=Round() class RsqrtGrad(Primitive): r""" Computes gradients for the Rsqrt. Args: y_backprop (Tensor): Input gradients tensor, has the same dtype and shape as `x`. x (Tensor): Origin input tensor. Returns: Tensor, has the same dtype and shape as `x`. """ @prim_arg_register def __init__(self): pass def __call__(self, y_backprop, x): return super().__call__(y_backprop, x) rsqrt_grad_op=RsqrtGrad()
[文档]class Rsqrt(Primitive): r""" .. code-block:: prim = ops.Rsqrt() out = prim(input) is equivalent to .. code-block:: ops.rsqrt(input) Refer to :func:`mindspore.ops.rsqrt` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
rsqrt_op=Rsqrt() class ScalarCast(Primitive): r""" .. code-block:: prim = ops.ScalarCast() out = prim(input_x, input_y) is equivalent to .. code-block:: ops.scalar_cast(input_x, input_y) Refer to :func:`mindspore.ops.scalar_cast` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input_x, input_y): return super().__call__(input_x, dtype_to_type_id('ScalarCast', 'input_y', input_y)) scalar_cast_op=ScalarCast()
[文档]class ScatterNd(Primitive): r""" .. code-block:: prim = ops.ScatterNd() out = prim(indices, updates, shape) is equivalent to .. code-block:: ops.scatter_nd(indices, updates, shape) Refer to :func:`mindspore.ops.scatter_nd` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, indices, updates, shape): return super().__call__(indices, updates, shape)
scatter_nd_op=ScatterNd() class Scatter(Primitive): r""" reverse operation of gather """ @prim_arg_register def __init__(self): pass def __call__(self, input, dim, index, src, reduce): return _convert_stub(pyboost_scatter(self, [input, dim, index, src, reduce])) scatter_op=Scatter()
[文档]class Select(Primitive): r""" The conditional tensor determines whether the corresponding element in the output must be selected from `x` (if True) or `y` (if False) based on the value of each element. It can be defined as: .. math:: out_i = \begin{cases} x_i, & \text{if } cond_i \\ y_i, & \text{otherwise} \end{cases} Inputs: - **cond** (Tensor[bool]): The condition tensor, decides which element is chosen. The shape is :math:`(x_1, x_2, ..., x_N, ..., x_R)`. - **x** (Tensor): The first Tensor to be selected. The shape is :math:`(x_1, x_2, ..., x_N, ..., x_R)`. - **y** (Tensor): The second Tensor to be selected. The shape is :math:`(x_1, x_2, ..., x_N, ..., x_R)`. Outputs: Tensor, has the same shape as `cond`. Raises: TypeError: If x or y is not a Tensor. ValueError: The shape of inputs are different. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> from mindspore import Tensor, ops >>> # Both inputs are Tensor >>> select = ops.Select() >>> cond = Tensor([True, False]) >>> x = Tensor([2,3], mindspore.float32) >>> y = Tensor([1,2], mindspore.float32) >>> output = select(cond, x, y) >>> print(output) [2. 2.] """ @prim_arg_register def __init__(self): pass def __call__(self, cond, x, y): return super().__call__(cond, x, y)
select_op=Select() class SequenceConcat(Primitive): r""" .. code-block:: prim = ops.SequenceConcat(axis) out = prim(x) is equivalent to .. code-block:: ops.sequence_concat(x, axis) Refer to :func:`mindspore.ops.sequence_concat` for more details. """ @prim_arg_register def __init__(self, axis=0): self._set_prim_arg("axis", axis) def __call__(self, x): return super().__call__(x, self.axis) class SigmoidGrad(Primitive): r""" Gets the gradient of Sigmoid operation. """ @prim_arg_register def __init__(self): pass def __call__(self, y, dy): return _convert_stub(pyboost_sigmoid_grad(self, [y, dy])) sigmoid_grad_op=SigmoidGrad()
[文档]class Sigmoid(Primitive): r""" .. code-block:: prim = ops.Sigmoid() out = prim(input) is equivalent to .. code-block:: ops.sigmoid(input) Refer to :func:`mindspore.ops.sigmoid` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return _convert_stub(pyboost_sigmoid(self, [input]))
sigmoid_op=Sigmoid() class SiLUGrad(Primitive): r""" Performs grad of SiLU operation. """ @prim_arg_register def __init__(self): pass def __call__(self, dout, x): return _convert_stub(pyboost_silu_grad(self, [dout, x])) silu_grad_op=SiLUGrad() class SiLU(Primitive): r""" .. code-block:: prim = ops.SiLU() out = prim(input) is equivalent to .. code-block:: ops.silu(input) Refer to :func:`mindspore.ops.silu` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return _convert_stub(pyboost_silu(self, [input])) silu_op=SiLU()
[文档]class Sin(Primitive): r""" .. code-block:: prim = ops.Sin() out = prim(input) is equivalent to .. code-block:: ops.sin(input) Refer to :func:`mindspore.ops.sin` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return _convert_stub(pyboost_sin(self, [input]))
sin_op=Sin()
[文档]class Sinc(Primitive): r""" .. code-block:: prim = ops.Sinc() out = prim(input) is equivalent to .. code-block:: ops.sinc(input) Refer to :func:`mindspore.ops.sinc` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
sinc_op=Sinc()
[文档]class Sinh(Primitive): r""" .. code-block:: prim = ops.Sinh() out = prim(input) is equivalent to .. code-block:: ops.sinh(input) Refer to :func:`mindspore.ops.sinh` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
sinh_op=Sinh() class SoftmaxBackward(Primitive): r""" """ __mindspore_signature__ = ( sig.make_sig('dout'), sig.make_sig('out'), sig.make_sig('dim', default=-1), ) @prim_arg_register def __init__(self): pass def __call__(self, dout, out, dim=-1): return _convert_stub(pyboost_softmax_backward(self, [dout, out, dim])) softmax_backward_op=SoftmaxBackward()
[文档]class Softmax(Primitive): r""" Applies the Softmax operation to the input tensor on the specified axis. Refer to :func:`mindspore.ops.softmax` for more details. Args: axis (Union[int, tuple], optional): The axis to perform the Softmax operation. Default: ``-1`` . Inputs: - **input** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions. Outputs: Tensor, with the same type and shape as the input. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) >>> softmax = ops.Softmax() >>> output = softmax(input) >>> print(output) [0.01165623 0.03168492 0.08612854 0.23412167 0.6364086 ] """ @prim_arg_register def __init__(self, axis=-1): self._set_prim_arg("axis", type_it('Softmax', 'axis', axis, OpDtype.DT_INT, OpDtype.DT_TUPLE_INT)) def __call__(self, input): return _convert_stub(pyboost_softmax(self, [input, self.axis]))
class SolveTriangular(Primitive): r""" .. code-block:: prim = ops.SolveTriangular() out = prim(a, b, trans, lower, unit_diagonal) is equivalent to .. code-block:: ops.solve_triangular(a, b, trans, lower, unit_diagonal) Refer to :func:`mindspore.ops.solve_triangular` for more details. """ __mindspore_signature__ = ( sig.make_sig('a'), sig.make_sig('b'), sig.make_sig('trans', default=0), sig.make_sig('lower', default=False), sig.make_sig('unit_diagonal', default=False), ) @prim_arg_register def __init__(self): pass def __call__(self, a, b, trans=0, lower=False, unit_diagonal=False): return super().__call__(a, b, trans, lower, unit_diagonal) solve_triangular_op=SolveTriangular()
[文档]class Split(Primitive): r""" Splits the input tensor into output_num of tensors along the given axis and output numbers. Refer to :func:`mindspore.ops.split` for more details. Args: axis (int): Index of the split position. Default: ``0`` . output_num (int): The number of output tensors. Must be positive int. Default: ``1`` . Inputs: - **input_x** (Tensor) - The shape of tensor is :math:`(x_0, x_1, ..., x_{R-1})`, R >= 1. Outputs: tuple[Tensor], the shape of each output tensor is the same, which is :math:`(x_0, x_1, ..., x_{axis}/{output\_num}, ..., x_{R-1})`. And the data type is the same as `input_x`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> split = ops.Split(1, 2) >>> x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]), mindspore.int32) >>> print(x) [[1 1 1 1] [2 2 2 2]] >>> output = split(x) >>> print(output) (Tensor(shape=[2, 2], dtype=Int32, value= [[1, 1], [2, 2]]), Tensor(shape=[2, 2], dtype=Int32, value= [[1, 1], [2, 2]])) >>> split = ops.Split(1, 4) >>> output = split(x) >>> print(output) (Tensor(shape=[2, 1], dtype=Int32, value= [[1], [2]]), Tensor(shape=[2, 1], dtype=Int32, value= [[1], [2]]), Tensor(shape=[2, 1], dtype=Int32, value= [[1], [2]]), Tensor(shape=[2, 1], dtype=Int32, value= [[1], [2]])) """ @prim_arg_register def __init__(self, axis=0, output_num=1): self._set_prim_arg("axis", axis) self._set_prim_arg("output_num", output_num) def __call__(self, input_x): return super().__call__(input_x, self.axis, self.output_num)
class SqrtGrad(Primitive): r""" Performs grad of Sqrt operation. """ @prim_arg_register def __init__(self): pass def __call__(self, dy, y): return super().__call__(dy, y) sqrt_grad_op=SqrtGrad()
[文档]class Sqrt(Primitive): r""" .. code-block:: prim = ops.Sqrt() out = prim(x) is equivalent to .. code-block:: ops.sqrt(x) Refer to :func:`mindspore.ops.sqrt` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, x): return _convert_stub(pyboost_sqrt(self, [x]))
sqrt_op=Sqrt()
[文档]class Square(Primitive): r""" .. code-block:: prim = ops.Square() out = prim(input) is equivalent to .. code-block:: ops.square(input) Refer to :func:`mindspore.ops.square` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return _convert_stub(pyboost_square(self, [input]))
square_op=Square()
[文档]class StridedSlice(Primitive): r""" .. code-block:: prim = ops.StridedSlice(begin_mask, end_mask, ellipsis_mask, new_axis_mask, shrink_axis_mask) out = prim(input_x, begin, end, strides) is equivalent to .. code-block:: ops.strided_slice(input_x, begin, end, strides, begin_mask, end_mask, ellipsis_mask, new_axis_mask, shrink_axis_mask) Refer to :func:`mindspore.ops.strided_slice` for more details. """ @prim_arg_register def __init__(self, begin_mask=0, end_mask=0, ellipsis_mask=0, new_axis_mask=0, shrink_axis_mask=0): self._set_prim_arg("begin_mask", begin_mask) self._set_prim_arg("end_mask", end_mask) self._set_prim_arg("ellipsis_mask", ellipsis_mask) self._set_prim_arg("new_axis_mask", new_axis_mask) self._set_prim_arg("shrink_axis_mask", shrink_axis_mask) def __call__(self, input_x, begin, end, strides): return super().__call__(input_x, begin, end, strides, self.begin_mask, self.end_mask, self.ellipsis_mask, self.new_axis_mask, self.shrink_axis_mask)
class SubExt(Primitive): r""" .. code-block:: prim = ops.SubExt() out = prim(input, other, alpha) is equivalent to .. code-block:: ops.sub_ext(input, other, alpha) Refer to :func:`mindspore.ops.sub_ext` for more details. """ __mindspore_signature__ = ( sig.make_sig('input', dtype=sig.sig_dtype.T), sig.make_sig('other', dtype=sig.sig_dtype.T), sig.make_sig('alpha', dtype=sig.sig_dtype.T1, default=1), ) @prim_arg_register def __init__(self): pass def __call__(self, input, other, alpha=1): return _convert_stub(pyboost_sub_ext(self, [input, other, alpha])) sub_ext_op=SubExt() class Sub(Primitive): r""" .. code-block:: prim = ops.Sub() out = prim(input, other) is equivalent to .. code-block:: ops.sub(input, other) Refer to :func:`mindspore.ops.sub` for more details. """ __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T) @prim_arg_register def __init__(self): pass def __call__(self, input, other): return super().__call__(input, other) sub_op=Sub() class TensorCopySlices(Primitive): r""" Copy continues memory. Inputs: - **x** (Tensor) - The target Tensor. - **value** (Tensor) - The tensor to update x. - **begin** (tuple[int]) - A tuple which represents the location where to start. Only constant value is allowed. - **end** (tuple[int]) - A tuple or which represents the maximum location where to end. Only constant value is allowed. - **strides** (tuple[int]) - A tuple which represents the stride is continuously added before reaching the maximum location. Only constant value is allowed. Outputs: - **y** (Tensor), has the same shape and data type of x. Examples: >>> import numpy as np >>> from mindspore.ops.operations import _inner_ops >>> copy_slices = _inner_ops.TensorCopySlices() >>> out = copy_slices(Tensor(np.zeros((5, 5))), Tensor(np.ones((2, 5))), (3, 0), (5, 5), (1, 1)) >>> print(out) [[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]] Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` """ @prim_arg_register def __init__(self): pass def __call__(self, x, value, begin, end, strides): return super().__call__(x, value, begin, end, strides) tensor_copy_slices_op=TensorCopySlices()
[文档]class TensorShape(Primitive): r""" Returns the shape of the input tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_x = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32) >>> output = ops.TensorShape()(input_x) >>> print(output) [3 2 1] """ @prim_arg_register def __init__(self): pass def __call__(self, input_x): return super().__call__(input_x)
tensor_shape_op=TensorShape()
[文档]class Trace(Primitive): r""" .. code-block:: prim = ops.Trace() out = prim(input) is equivalent to .. code-block:: ops.trace(input) Refer to :func:`mindspore.ops.trace` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input): return super().__call__(input)
trace_op=Trace()
[文档]class Transpose(Primitive): r""" .. code-block:: prim = ops.Transpose() out = prim(input, input_perm) is equivalent to .. code-block:: ops.transpose(input, input_perm) Refer to :func:`mindspore.ops.transpose` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input, input_perm): return _convert_stub(pyboost_transpose(self, [input, input_perm]))
transpose_op=Transpose() class TupleToTensor(Primitive): r""" .. code-block:: prim = ops.TupleToTensor() out = prim(input_tuple, dtype) is equivalent to .. code-block:: ops.tuple_to_tensor(input_tuple, dtype) Refer to :func:`mindspore.ops.tuple_to_tensor` for more details. """ __mindspore_signature__ = ( sig.make_sig('input_tuple'), sig.make_sig('dtype', default=None), ) @prim_arg_register def __init__(self): pass def __call__(self, input_tuple, dtype=None): return super().__call__(input_tuple, dtype if dtype is None else dtype_to_type_id('TupleToTensor', 'dtype', dtype)) tuple_to_tensor_op=TupleToTensor()
[文档]class UnsortedSegmentSum(Primitive): r""" .. code-block:: prim = ops.UnsortedSegmentSum() out = prim(input_x, segment_ids, num_segments) is equivalent to .. code-block:: ops.unsorted_segment_sum(input_x, segment_ids, num_segments) Refer to :func:`mindspore.ops.unsorted_segment_sum` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input_x, segment_ids, num_segments): return super().__call__(input_x, segment_ids, num_segments)
unsorted_segment_sum_op=UnsortedSegmentSum() class View(Primitive): r""" .. code-block:: prim = ops.View() out = prim(input, shape) is equivalent to .. code-block:: ops.view(input, shape) Refer to :func:`mindspore.ops.view` for more details. """ @prim_arg_register def __init__(self): pass def __call__(self, input, shape): return super().__call__(input, shape) view_op=View() class WeightQuantBatchMatmul(Primitive): r""" .. code-block:: prim = ops.WeightQuantBatchMatmul(transpose_x, transpose_weight, antiquant_group_size) out = prim(x, weight, antiquant_scale, antiquant_offset, quant_scale, quant_offset, bias) is equivalent to .. code-block:: ops.weight_quant_batch_matmul(x, weight, antiquant_scale, antiquant_offset, quant_scale, quant_offset, bias, transpose_x, transpose_weight, antiquant_group_size) Refer to :func:`mindspore.ops.weight_quant_batch_matmul` for more details. """ __mindspore_signature__ = ( sig.make_sig('x'), sig.make_sig('weight'), sig.make_sig('antiquant_scale'), sig.make_sig('antiquant_offset', default=None), sig.make_sig('quant_scale', default=None), sig.make_sig('quant_offset', default=None), sig.make_sig('bias', default=None), ) @prim_arg_register def __init__(self, transpose_x=False, transpose_weight=False, antiquant_group_size=0): self._set_prim_arg("transpose_x", transpose_x) self._set_prim_arg("transpose_weight", transpose_weight) self._set_prim_arg("antiquant_group_size", antiquant_group_size) def __call__(self, x, weight, antiquant_scale, antiquant_offset=None, quant_scale=None, quant_offset=None, bias=None): return super().__call__(x, weight, antiquant_scale, antiquant_offset, quant_scale, quant_offset, bias, self.transpose_x, self.transpose_weight, self.antiquant_group_size)
[文档]class ZerosLike(Primitive): r""" Returns a Tensor with a value of 0 and its shape and data type is the same as the input. Inputs: - **input_x** (Tensor) - Input Tensor of any dimension. Outputs: Tensor, has the same shape and data type as `input_x` but filled with zeros. Raises: TypeError: If `input_x` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor, ops >>> zeroslike = ops.ZerosLike() >>> input_x = Tensor(np.array([[0, 1], [2, 1]]).astype(np.float32)) >>> output = zeroslike(input_x) >>> print(output) [[0. 0.] [0. 0.]] """ @prim_arg_register def __init__(self): pass def __call__(self, x): return super().__call__(x)
zeros_like_op=ZerosLike()