音频变换样例库
此指南展示了mindpore.dataset.audio模块中各种变换的用法。
环境准备
[1]:
import librosa
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wavfile
from IPython.display import Audio
from download import download
import mindspore.dataset as ds
import mindspore.dataset.audio as audio
ds.config.set_seed(5)
# cication: LibriSpeech http://www.openslr.org/12
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/84-121123-0000.wav"
download(url, './84-121123-0000.wav', replace=True)
wav_file = "84-121123-0000.wav"
def plot_waveform(waveform, sr, title="Waveform"):
if waveform.ndim == 1:
waveform = waveform[np.newaxis, :]
num_channels, num_frames = waveform.shape
time_axis = np.arange(0, num_frames) / sr
figure, axes = plt.subplots(num_channels, 1)
axes.plot(time_axis, waveform[0], linewidth=1)
axes.grid(True)
figure.suptitle(title)
plt.show(block=False)
def plot_spectrogram(specgram, title=None, ylabel="freq_bin"):
fig, axs = plt.subplots(1, 1)
axs.set_title(title or "Spectrogram (db)")
axs.set_ylabel(ylabel)
axs.set_xlabel("frame")
im = axs.imshow(librosa.power_to_db(specgram), origin="lower", aspect="auto")
fig.colorbar(im, ax=axs)
plt.show(block=False)
def plot_fbank(fbank, title=None):
_, axs = plt.subplots(1, 1)
axs.set_title(title or "Filter bank")
axs.imshow(fbank, aspect="auto")
axs.set_ylabel("frequency bin")
axs.set_xlabel("mel bin")
plt.show(block=False)
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/84-121123-0000.wav (65 kB)
file_sizes: 100%|███████████████████████████| 67.0k/67.0k [00:00<00:00, 720kB/s]
Successfully downloaded file to ./84-121123-0000.wav
Spectrogram
从音频信号创建其频谱,可以使用mindspore.dataset.audio.Spectrogram。
[2]:
sample_rate, waveform = wavfile.read(wav_file)
plot_waveform(waveform, sample_rate, title="Original waveform")
Audio(waveform, rate=sample_rate)
[2]:
[3]:
# Perform transform
n_fft = 1024
win_length = None
hop_length = 512
# Define transform
spectrogram = audio.Spectrogram(
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
center=True,
pad_mode=audio.BorderType.REFLECT,
power=2.0,
)
spec = spectrogram(waveform)
plot_spectrogram(spec, title="audio")
GriffinLim
从线性幅度频谱图恢复信号波形, 可以使用 mindspore.dataset.audio.GriffinLim 。
[4]:
n_fft = 1024
win_length = None
hop_length = 512
spec = audio.Spectrogram(
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
)(waveform)
griffin_lim = audio.GriffinLim(
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
)
reconstructed_waveform = griffin_lim(spec)
plot_waveform(reconstructed_waveform, sample_rate, title="Reconstructed")
Audio(reconstructed_waveform, rate=sample_rate)
[4]:
Mel Filter Bank
mindspore.dataset.audio.melscale_fbanks 可以创建频率变换矩阵。
[5]:
n_fft = 256
n_mels = 64
sample_rate = 6000
mel_filters = audio.melscale_fbanks(
int(n_fft // 2 + 1),
n_mels=n_mels,
f_min=0.0,
f_max=sample_rate / 2.0,
sample_rate=sample_rate,
norm=audio.NormType.SLANEY,
)
plot_fbank(mel_filters, "Mel Filter Bank - audio")
MelSpectrogram
mindspore.dataset.audio.MelSpectrogram 可以计算原始音频信号的梅尔频谱。
[6]:
n_fft = 1024
win_length = None
hop_length = 512
n_mels = 128
mel_spectrogram = audio.MelSpectrogram(
sample_rate=sample_rate,
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
center=True,
pad_mode=audio.BorderType.REFLECT,
power=2.0,
norm=audio.NormType.SLANEY,
onesided=True,
n_mels=n_mels,
mel_scale=audio.MelType.HTK,
)
melspec = mel_spectrogram(waveform)
plot_spectrogram(melspec, title="MelSpectrogram - audio", ylabel="mel freq")
MFCC
mindspore.dataset.audio.MFCC 可以计算音频信号的梅尔频率倒谱系数。
[7]:
n_fft = 2048
win_length = None
hop_length = 512
n_mels = 256
n_mfcc = 256
mfcc_transform = audio.MFCC(
sample_rate=sample_rate,
n_mfcc=n_mfcc,
melkwargs={
"n_fft": n_fft,
"win_length": n_fft,
"f_min": 0.0,
"f_max": sample_rate // 2,
"pad": 0,
"pad_mode": audio.BorderType.REFLECT,
"power": 2.0,
"n_mels": n_mels,
"normalized": False,
"center": True,
"onesided": True,
"window": audio.WindowType.HANN,
"hop_length": hop_length,
"norm": audio.NormType.NONE,
"mel_scale": audio.MelType.HTK,
},
)
mfcc = mfcc_transform(waveform)
plot_spectrogram(mfcc)
LFCC
mindspore.dataset.audio.LFCC 可以计算音频信号的线性频率倒谱系数。
[8]:
n_fft = 2048
win_length = None
hop_length = 512
n_lfcc = 256
lfcc_transform = audio.LFCC(
sample_rate=sample_rate,
n_lfcc=n_lfcc,
speckwargs={
"n_fft": n_fft,
"win_length": n_fft,
"hop_length": hop_length,
"pad": 0,
"window": audio.WindowType.HANN,
"power": 2.0,
"normalized": False,
"center": True,
"pad_mode": audio.BorderType.REFLECT,
"onesided": True
},
)
lfcc = lfcc_transform(waveform)
plot_spectrogram(lfcc)
在数据Pipeline中加载和处理图像文件
使用 mindspore.dataset.GeneratorDataset 将磁盘中的音频文件内容加载到数据Pipeline中,并进一步应用其他增强操作。
[9]:
import scipy.io.wavfile as wavfile
import mindspore.dataset as ds
import mindspore.dataset.audio as audio
# Define dataloader
class DataLoader():
def __init__(self):
self.sample_rate, self.wave = wavfile.read("84-121123-0000.wav")
def __next__(self):
return next(self.data)
def __iter__(self):
self.data = iter([(self.wave, self.sample_rate), (self.wave, self.sample_rate), (self.wave, self.sample_rate)])
return self
# Load 3 waveforms into dataset pipeline
dataset = ds.GeneratorDataset(DataLoader(), column_names=["wav", "sample_rate"], shuffle=False)
# check the sample numbers in dataset
print("number of samples in dataset:", dataset.get_dataset_size())
# apply gain on "wav" column
dataset = dataset.map(audio.Gain(gain_db=3.0), input_columns=["wav"])
# check results, specify the output type to NumPy for drawing
print(">>>>> after gain")
for waveform, sample_rate in dataset.create_tuple_iterator(output_numpy=True):
# show the wav
plot_waveform(waveform, sample_rate, title="Gained waveform")
# after drawing one wav, break
break
number of samples in dataset: 3
>>>>> after gain