全场景统一架构
MindSpore旨在提供端边云全场景的AI框架。MindSpore可部署于端、边、云不同的硬件环境,满足不同环境的差异化需求,如支持端侧的轻量化部署,支持云侧丰富的训练功能如自动微分、混合精度、模型易用编程等。
云侧包括NVIDIA GPU、Huawei Ascend、Intel x86等,端侧包括Arm、Qualcomm、Kirin等。
全场景重要特性
MindSpore全场景的几个重要特性:
端边云统一的C++推理接口,支持算法代码可快速迁移到不同硬件环境执行,如基于C++接口实现端侧训练。
模型统一,端云使用相同的模型格式和定义,软件架构一致。MindSpore支持Ascend、GPU、CPU(x86、Arm)等多种硬件的执行,一次训练多处部署使用。
多样化算力支持。提供统一的南向接口,支持新硬件的快捷添加使用。
模型小型化技术,适配不同硬件环境和业务场景的要求,如量化压缩等。
全场景支持模式
如上图所示,在MindSpore上训练出来的模型文件,可通过Serving部署在云服务中执行,也可用过Lite执行在服务器、端侧等设备上。同时Lite支持通过独立工具convert进行模型的离线优化,实现推理时框架的轻量化以及模型执行高性能的目标。
MindSpore抽象各个硬件下的统一算子接口,因此,在不同硬件环境下,网络模型的编程代码可以保持一致。同时加载相同的模型文件,在MindSpore支持的各个不同硬件上均能有效执行推理。
推理方面考虑到大量用户使用C++/C编程方式,提供了C++的推理编程接口,相关编程接口在形态上与Python接口的风格较接近。
同时,通过提供第三方硬件的自定义离线优化注册,第三方硬件的自定义算子注册机制,实现快速对接新的硬件,同时对外的模型编程接口以及模型文件保持不变。
中间表示MindIR
简介
中间表示(IR)是程序编译过程中介于源语言和目标语言之间的程序表示,以方便编译器进行程序分析和优化,因此IR的设计需要考虑从源语言到目标语言的转换难度,同时考虑程序分析和优化的易用性和性能。
MindIR是一种基于图表示的函数式IR,其最核心的目的是服务于自动微分变换。自动微分采用的是基于函数式编程框架的变换方法,因此IR采用了接近于ANF函数式的语义。此外,借鉴Sea of Nodes[1]和Thorin[2]的优秀设计,采用了一种基于显性依赖图的表示方式。关于ANF-IR的具体介绍,可以参考MindSpore IR文法定义。
在图模式set_context(mode=GRAPH_MODE)
下运行用MindSpore编写的模型时,若配置中设置了set_context(save_graphs=1)
,运行时会输出一些图编译过程中生成的一些中间文件,我们称为IR文件。当需要分析更多后端流程相关的ir文件时,可以设置set_context(save_graphs=True)
或set_context(save_graphs=2)
。当需要更多进阶的信息比如可视化计算图,或者更多详细前端ir图时,可以设置set_context(save_graphs=3)
。当前主要有三种格式的IR文件:
ir后缀结尾的IR文件:一种比较直观易懂的以文本格式描述模型结构的文件,可以直接用文本编辑软件查看。
dot后缀结尾的IR文件:描述了不同节点间的拓扑关系,可以用graphviz将此文件作为输入生成图片,方便用户直观地查看模型结构。对于算子比较多的模型,推荐使用可视化组件MindSpore Insight对计算图进行可视化。
文法定义
ANF是函数式编程中常用且简洁的中间表示,其文法定义如下所示:
<aexp> ::= NUMBER | STRING | VAR | BOOLEAN | PRIMOP
| (lambda (VAR …) <exp>)
<cexp> ::= (<aexp> <aexp> …)
| (if <aexp> <exp> <exp>)
<exp> ::= (let ([VAR <cexp>]) <exp>) | <cexp> | <aexp>
ANF中表达式分为原子表达式(aexp)和复合表达式(cexp),原子表达式表示一个常数值或一个变量或一个匿名函数;复合表达式由多个原子表达式复合组成,表示一个匿名函数或原语函数调用,组合的第一个输入是调用的函数,其余输入是调用的参数。
MindIR文法继承于ANF,其定义如下所示:
<ANode> ::= <ValueNode> | <ParameterNode>
<ParameterNode> ::= Parameter
<ValueNode> ::= Scalar | Named | Tensor | Type | Shape
| Primitive | MetaFuncGraph | FuncGraph
<CNode> ::= (<AnfNode> …)
<AnfNode> ::= <CNode> | <ANode>
MindIR中的ANode对应于ANF的原子表达式,ANode有两个子类分别为ValueNode和ParameterNode。ValueNode表示常数节点,可承载一个常数值(标量、符号、张量、类型、维度等),也可以是一个原语函数(Primitive)或一个元函数(MetaFuncGraph)或一个普通函数(FuncGraph),因为在函数式编程中函数定义本身也是一个值。ParameterNode是参数节点,表示函数的形参。
MindIR中CNode对应于ANF的复合表达式,表示一次函数调用。
在MindSpore自动微分时,会计算ParameterNode和CNode的梯度贡献,并返回最终ParameterNode的梯度,而不计算ValueNode的梯度。
示例
下面以一段程序作为示例,对比理解MindIR。
[1]:
def func(x, y):
return x / y
@ms.jit
def test_f(x, y):
a = x - 1
b = a + y
c = b * func(a, b)
return c
这段Python代码对应的ANF表达为:
lambda (x, y)
let a = x - 1 in
let b = a + y in
let func = lambda (x, y)
let ret = x / y in
ret end in
let %1 = func(a, b) in
let c = b * %1 in
c end
对应的MindIR为ir.dot:
在MindIR中,一个函数图(FuncGraph)表示一个普通函数的定义,函数图一般由ParameterNode、ValueNode和CNode组成有向无环图,可以清晰地表达出从参数到返回值的计算过程。在上图中可以看出,python代码中两个函数test_f
和func
转换成了两个函数图,其参数x
和y
转换为函数图的ParameterNode,每一个表达式转换为一个CNode。CNode的第一个输入链接着调用的函数,例如图中的add
、func
、return
。值得注意的是这些节点均是ValueNode
,因为它们被理解为常数函数值。CNode的其他输入链接这调用的参数,参数值可以来自于ParameterNode、ValueNode和其他CNode。
在ANF中每个表达式都用let表达式绑定为一个变量,通过对变量的引用来表示对表达式输出的依赖,而在MindIR中每个表达式都绑定为一个节点,通过节点与节点之间的有向边表示依赖关系。
函数式语义
MindIR较传统计算图的一个重要特性是不仅可以表达算子之间的数据依赖,还可以表达丰富的函数式语义。
高阶函数
在MindIR中,函数的定义是由一个子图来定义,但其本身可以是一个被传递的值,作为其他高阶函数的输入或输出。 例如下面一个简单的示例中,函数f
作为参数传入了函数g
,因此函数g
是一个接收函数输入的高阶函数,函数f
真正的调用点是在函数g
内部。
[2]:
@ms.jit
def hof(x):
def f(x):
return x + 3
def g(function, x):
return function(x) * function(x)
res = g(f, x)
return res
对应的MindIR为hof.dot:
在实际网络训练脚本中,自动求导泛函grad
和优化器中常用到的Partial
和HyperMap
都是典型的高阶函数。高阶语义极大地提升了MindSpore表达的灵活性和简洁性。
控制流
控制流在MindIR中是以高阶函数选择调用的形式表达。这样的形式把控制流转换为高阶函数的数据流,从而使得自动微分算法更加强大。不仅可以支持数据流的自动微分,还可以支持条件跳转、循环和递归等控制流的自动微分。
下面以一个简单的斐波那契用例来演示说明。
[3]:
@ms.jit
def fibonacci(n):
if n < 1:
return 0
if n == 1:
return 1
return fibonacci(n-1) + fibonacci(n-2)
对应的MindIR为cf.dot:
其中fibonacci
是顶层函数图,在顶层中有两个函数图被switch
选择调用。✓fibonacci
是第一个if
的True分支,✗fibonacci
是第一个if
的False分支。在✗fibonacci
中被调用的✓✗fibonacci
是elif
的True分支,✗✗fibonacci
是elif
的False分支。这里需要理解的关键是在MindIR中,条件跳转和递归是以高阶控制流的形式表达的。例如,✓fibonacci
和✗fibonacci
是作为switch
算子的参数传入,switch
根据条件参数选择哪一个函数作为返回值。因此,switch
是把输入的函数当成普通的值做了一个二元选择操作,并没有调用,而真正的函数调用是在紧随switch
后的CNode上完成。
自由变量和闭包
闭包(closure)是一种编程语言特性,它指的是代码块和作用域环境的结合。自由变量(free variable)是指在代码块中引用作用域环境中的变量而非局部变量。在MindIR中,代码块是以函数图呈现的,而作用域环境可以理解为该函数被调用时的上下文环境,自由变量的捕获方式是值拷贝而非引用。
一个典型的闭包用例如下:
[4]:
@ms.jit
def func_outer(a, b):
def func_inner(c):
return a + b + c
return func_inner
@ms.jit
def ms_closure():
closure = func_outer(1, 2)
out1 = closure(1)
out2 = closure(2)
return out1, out2
对应的MindIR为closure.dot:
在例子中,a
和b
是自由变量,因为func_inner
中变量a
和b
是引用的其父图func_outer
中定义的参数。变量closure
是一个闭包,它是函数func_inner
与其上下文func_outer(1, 2)
的结合。因此,out1
的结果是4,因为其等价于1+2+1
,out2
的结果是5,因为其等价于1+2+2
。
参考文献
[1] C. Click and M. Paleczny. A simple graph-based intermediate representation. SIGPLAN Not., 30:35–49, March 1995.
[2] Roland Leißa, Marcel Köster, and Sebastian Hack. A graph-based higher-order intermediate representation. In Proceedings of the 13th Annual IEEE/ACM International Symposium on Code Generation and Optimization, pages 202–212. IEEE Computer Society, 2015.