mindspore.ops.transpose

mindspore.ops.transpose(input, input_perm)[源代码]

根据指定的排列对输入的Tensor进行数据重排。

此函数对于一维数组转置后不产生变化。对于一维数组转为二维列向量,请参照: mindspore.ops.expand_dims() 。对于二维数组可以看做是标准的矩阵转置。对于n维数组,根据指定的轴进行排列。如果没有指定轴并且a.shape为 \((i[0], i[1], ... i[n-2], i[n-1])\) ,那么a.transpose().shape为 \((i[n-1], i[n-2], ... i[1], i[0])\)

说明

GPU和CPU平台上,如果 input_perm 的元素值为负数,则其实际值为 input_perm[i] + rank(input) 。 Ascend平台不支持 input_perm 元素值为负。

参数:
  • input (Tensor) - 输入Tensor,其shape是 \((x_1, x_2, ..., x_R)\)

  • input_perm (tuple[int]) - 指定排列。 input_perm 中的元素由 input 的每个维度的索引组成。 input_perm 的长度和 input 的shape相同。只支持常量值。其范围在[-rank(input), rank(input))内。

返回:

Tensor,输出Tensor的数据类型与 input 相同,输出Tensor的shape由 input 的shape和 input_perm 的值决定。

异常:
  • TypeError - input_perm 不是tuple。

  • ValueError - input 的shape长度不等于 input_perm 的shape长度。

  • ValueError - input_perm 中存在相同的元素。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> input = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]), mindspore.float32)
>>> input_perm = (0, 2, 1)
>>> output = ops.transpose(input, input_perm)
>>> print(output)
[[[ 1.  4.]
  [ 2.  5.]
  [ 3.  6.]]
 [[ 7. 10.]
  [ 8. 11.]
  [ 9. 12.]]]